
AMarquee

Jeremy Friesner

AMarquee ii

COLLABORATORS

TITLE :

AMarquee

ACTION NAME DATE SIGNATURE

WRITTEN BY Jeremy Friesner April 18, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AMarquee iii

Contents

1 AMarquee 1

1.1 Contents . 1

1.2 miami . 2

1.3 residentnote . 3

1.4 Installation . 3

1.5 amitcpinstall . 4

1.6 inet225install . 4

1.7 credits . 5

1.8 How to reach me . 5

1.9 disclaimer . 5

1.10 AMarquee is DonationWare . 5

1.11 What you need . 7

1.12 introduction . 8

1.13 Using AMarqueed . 9

1.14 Using amarquee.library functions from ARexx scripts . 12

1.15 Using amarquee.library . 13

1.16 sessionclass . 14

1.17 api . 15

1.18 usingintro . 16

1.19 qmessages . 17

1.20 qnewsession . 20

1.21 qnewsessionasync . 22

1.22 qnewhostsession . 24

1.23 qnewserversession . 27

1.24 qfreesession . 29

1.25 qdetachsession . 30

1.26 qreattachsession . 33

1.27 qnumqueuedpackets . 35

1.28 qerrorname . 36

1.29 qnumqueuedbytes . 36

AMarquee iv

1.30 qdebugop . 37

1.31 qgetop . 38

1.32 qdeleteop . 40

1.33 qrenameop . 41

1.34 qsubscribeop . 42

1.35 qgetandsubscribeop . 43

1.36 qsetop . 45

1.37 qmessageop . 46

1.38 qsysmessageop . 48

1.39 qstreamop . 50

1.40 qclearsubscriptionop . 51

1.41 qpingop . 52

1.42 qinfoop . 53

1.43 qsetaccessop . 55

1.44 qsetmessageaccessop . 56

1.45 qrequestprivilegesop . 57

1.46 qreleaseprivilegesop . 58

1.47 qkillclientsop . 59

1.48 getnextqmessage . 61

1.49 getqmessagefield . 62

1.50 paramprivs . 63

1.51 qsetparameterop . 65

1.52 qgetparameterop . 66

1.53 freeqmessage . 67

1.54 qgo . 68

1.55 installdaemon . 70

1.56 exampleclients . 71

1.57 Thanks . 73

1.58 faq . 73

1.59 The ground was littered with squashed bugs... 74

1.60 What’s Next? . 78

1.61 unnamed.1 . 79

1.62 Known Bugs and Other Problems . 79

1.63 otherprogs . 80

AMarquee 1 / 80

Chapter 1

AMarquee

1.1 Contents

AMarquee V1.48 by Jeremy Friesner

AMarquee is a mechanism by which Amiga programs and ARexx scripts

on multiple Amigas may easily communicate data to each other in

a many-to-many, "broadcast" fashion. It consists of two parts, an

inetd daemon for the server computer to run, and a shared library

for client computers to run. AMarquee has been made as general as

possible, and it is my hope that a variety of uses will be found for it.

Disclaimer Don’t blame me!

Distribution AMarquee is DonationWare!

Requirements What do I need to run this program?

Introduction What does AMarquee do?

Installation How do I set AMarquee up?

Using AMarquee How to use the amarquee.library

Using AMarqueed How to use the AMarqueed server

Example clients Silly little applets to play with

Credits Where it’s due

Acknowledgments Thanks to...

History Bug fixes and enhancements

Future What next?

F.A.Q. Frequently Asked Questions

Known Problems Bugs! Aack!

Other programs Plug, plug!

AMarquee 2 / 80

1.2 miami

If you wish to install AMarquee manually for use with Miami,

the procedure is slightly different.

The client side of the AMarquee system, amarquee.library, installs

exactly the same as with AmiTCP--just copy it into LIBS:.

To install the server, you must do something different. With

AmiTCP, you have two config files, amitcp:db/services, and

amitcp:db/inetd.conf. To install a new daemon, you edit these

files with your text editor, as described in the Installation

section. In Miami, however, these files are actually windows

in the GUI. What you need to do is add the same lines to

the ListViews in these windows that would have been added

to the corresponding config files under AmiTCP.

To wit:

1) Open up the "Miami" application in your Miami drawer.

2) Click on "Database" on the ListView at the left. The rest

of the window changes to display a new interface.

3) Make sure the cycle gadget at the top of the window is set

to "services"

4) Click the "Add" button near the lower right, and type the line

AMarquee 2957/tcp

into the string gadget, and press return. Verify that this

line is now listed at the bottom of the ListView.

5) Select "InetD" in the cycle gadget at the top of the window.

The ListView will now show a different list of entries.

6) Click the "Add" button near the lower right, and type the line

AMarquee stream tcp nowait root work:Miami/AMarqueed

into the string gadget, and press return. The line you just

typed should now be included at the bottom of the ListView’s

list. (Note that you should change "work:Miami/AMarqueed" to

reflect the actual location of the AMarqueed file!)

Read this note about making AMarqueed resident

7) Select "Save" from the "Settings" menu to make your additions

permanent.

AMarquee 3 / 80

1.3 residentnote

There are two ways to have the AMarqueed executable be run when

an AMarquee client connects to your computer: resident, and

non-resident. If the AMarqueed executable is not resident, a

new copy of its binary code will be loaded into memory for

each connection that is accepted. If, on the other hand, it

has been made resident, then only one copy of the AMarqueed

executable will ever be loaded into memory, no matter how many

simultaneous connections there are. Obviously, making AMarqueed

resident will save memory in most situations.

There are two things you have to do to make AMarqueed run

resident. The first is to make sure the line

resident amitcp:serv/AMarqueed

has been executed before your first AMarquee connection is

accepted. This can be done in your user-startup file, or

in your amitcp:bin/startnet file, or anywhere else, as long

as it is done somewhere. You may need to change the path

above to accurately reflect the location of the AMarqueed

executable on your system. (The included Installer script puts

this command in your user-startup file)

The second thing to do is modify AMarquee’s line in the InetD

configuration so that no file path is specified. This is

necessary because specififying a file path will cause the

executable to be loaded from that path rather than re-used

from memory. Thus, you should edit the file (amitcp or inet):db/inet.conf

(or the Databases/InetD window in Miami) to contain this line:

AMarquee stream tcp nowait root AMarqueed

(note that the amitcp:serv/ prefix in the last field has been

deleted!)

You can check to see if the residenting is working by

accepting several AMarquee connections, and then typing

"resident" at a shell prompt. You should see AMarqueed listed,

with a usage count of greater than 0.

1.4 Installation

If you are using AmiTCP, Inet225, or Miami, you can use the included Installer

script to install AMarquee (actually, you can use the Installer script

to install everything but AMarqueed even if you are not using one of the

above packages!).

If you don’t like to use Installer scripts, there are manual

installation instructions available for AmiTCP , Inet225 , and Miami .

AMarquee 4 / 80

1.5 amitcpinstall

AMarquee is made of two parts, each of which may be installed

independantly of the other. The first part, amarquee.library,

is a front-end library for use by Amiga programs that wish

to act as AMarquee clients. It may be installed by copying it

to your LIBS: directory.

The second part, AMarqueed, is the TCP server program that stores

broadcasted information for other Amigas and co-ordinates information

updating and notification. You only need to install it if you wish

to use your Amiga as an AMarquee server.

To install the AMarquee server for use with AmiTCP, do the following:

1) Copy the file AMarqueed from the distribution into your

amitcp:serv directory.

2) Add the following line to the end of your amitcp:db/services file:

AMarquee 2957/tcp

3) Add the following line to the end of your amitcp:db/inetd.conf file:

AMarquee stream tcp nowait root amitcp:serv/AMarqueed

Read this note about making AMarqueed resident

4) Re-start AmiTCP. Your AMarquee server should now be ready to

accept connections. Try running one of the included example

programs to "localhost" to test it out.

1.6 inet225install

AMarquee is made of two parts, each of which may be installed

independantly of the other. The first part, amarquee.library.inet225,

is a front-end library for use by Amiga programs that wish

to act as AMarquee clients. It may be installed by copying it

to your LIBS: directory, then renaming it to "amarquee.library".

The second part, AMarqueed, is the TCP server program that stores

broadcasted information for other Amigas and co-ordinates information

updating and notification. You only need to install it if you wish

to use your Amiga as an AMarquee server.

To install the AMarquee server for use with Inet225, do the following:

1) Copy the file AMarqueed.inet225 from the distribution into your

inet:serv directory, and rename it to "AMarqueed".

2) Add the following line to the end of your inet:db/services file:

AMarquee 2957/tcp

AMarquee 5 / 80

3) Add the following line to the end of your inet:db/inetd.conf file:

AMarquee stream tcp nowait inet:serv/AMarqueed

Read this note about making AMarqueed resident

4) Re-start Inet225. Your AMarquee server should now be ready to

accept connections. Try running one of the included example

programs to "localhost" to test it out.

1.7 credits

AMarquee V1.48

Created by Jeremy Friesner

Compiled with DICE C by Matt Dillon

1.8 How to reach me

Here are some ways to get in touch with me:

by EMail: jfriesne@ucsd.edu

jaf@chem.ucsd.edu

jaf@praja.com

by SMail: Jeremy Friesner

9481 Questa Pointe

San Diego, CA 92126

1.9 disclaimer

This software comes with no warranty, either expressed or implied.

The author is in no way responsible for any damage or loss that may occur

due to direct or indirect usage of this software. Use this software entirely

at your own risk.

1.10 AMarquee is DonationWare

NOTE: Please report any bugs you find while using this software.

AMarquee may be distributed freely, as long as the original

archive is kept intact.

AMarquee is DonationWare. I’ve put a lot of time into it to make it as

easy-to-use, stable, efficient, and useful as possible, so if you find

AMarquee to your liking and use it often, please consider sending me a $5 or $10

donation, and in return I will send you the source code to AMarquee (if

AMarquee 6 / 80

you want it), future upgrades directly and give your suggestions preferred

treatment. Also, if you write a program that benefits from AMarquee and

nets you a significant amount of money, I request that you think about

kicking a small percentage of the profits down to me!

However, if you can’t afford that or for some other reason don’t want

to send money, that’s okay also. Just send me email telling me that you’re

using it, and list any suggestions that you have for improving it. :-)

Permission is given to include this program in a public archive

(such as a BBS, FTP site, PD library or CD-ROM) providing that all parts

of the original distribution are kept intact. These are as follows:

Listing of archive ’AMarquee1.48.lha’:

Original Packed Ratio Date Time Name

-------- ------- ----- --------- -------- -------------

1233 595 51.7% 10-Apr-98 12:21:24 AMarquee.info

163550 46683 71.4% 10-Apr-98 12:21:28 +amarquee.guide

1542 1096 28.9% 10-Apr-98 12:21:28 +AMarquee.guide.info

33152 17522 47.1% 10-Apr-98 12:21:24 +amarquee.library

33228 17565 47.1% 10-Apr-98 12:21:26 +amarquee.library.inet225

5448 2461 54.8% 10-Apr-98 12:21:24 +AMarquee.readme

835 268 67.9% 10-Apr-98 12:21:24 +AMarquee.readme.info

40636 21468 47.1% 10-Apr-98 12:21:24 +AMarqueed

40668 21474 47.1% 10-Apr-98 12:21:24 +AMarqueed.inet225

4123 1604 61.0% 10-Apr-98 12:21:28 +EditTextFile.rexx

10976 6286 42.7% 10-Apr-98 12:21:30 +AMarqueeDebug

7166 2349 67.2% 10-Apr-98 12:21:28 +amarqueedebug.c

6753 2323 65.6% 10-Apr-98 12:21:30 +amarqueedebug.cpp

7085 2319 67.2% 10-Apr-98 12:21:32 +amarqueedebug.rexx

12920 7206 44.2% 10-Apr-98 12:21:30 +AMarqueeDebugMultiThread

9537 3191 66.5% 10-Apr-98 12:21:28 +AMarqueeDebugMultiThread.c

9200 5495 40.2% 10-Apr-98 12:21:30 +AMarqueeHost

4175 1563 62.5% 10-Apr-98 12:21:32 +amarqueehost.c

6380 2123 66.7% 10-Apr-98 12:21:30 +amarqueehost.rexx

11868 6923 41.6% 10-Apr-98 12:21:30 +AMarqueeServer

5307 1924 63.7% 10-Apr-98 12:21:30 +AMarqueeServer.c

7400 4731 36.0% 10-Apr-98 12:21:30 +BounceCount

2910 1167 59.8% 10-Apr-98 12:21:32 +BounceCount.c

522 275 47.3% 10-Apr-98 12:21:32 +dmakefile

494 262 46.9% 10-Apr-98 12:21:32 +dmakefile.bak

2439 1114 54.3% 10-Apr-98 12:21:28 +killclients.rexx

AMarquee 7 / 80

10408 6410 38.4% 10-Apr-98 12:21:30 +MiniIRC

6379 2171 65.9% 10-Apr-98 12:21:32 +MiniIRC.c

1139 502 55.9% 10-Apr-98 12:21:32 +PascalTest.p

6984 4444 36.3% 10-Apr-98 12:21:30 +RemoveTest

2546 1035 59.3% 10-Apr-98 12:21:32 +RemoveTest.c

9324 5734 38.5% 10-Apr-98 12:21:30 +SillyGame

8214 2586 68.5% 10-Apr-98 12:21:32 +SillyGame.c

7404 4711 36.3% 10-Apr-98 12:21:30 +StreamCheck

3132 1242 60.3% 10-Apr-98 12:21:32 +StreamCheck.c

7276 4628 36.3% 10-Apr-98 12:21:30 +StreamGen

2612 1090 58.2% 10-Apr-98 12:21:32 +streamgen.c

7456 4717 36.7% 10-Apr-98 12:21:30 +SyncTest

3250 1302 59.9% 10-Apr-98 12:21:32 +SyncTest.c

2658 1181 55.5% 10-Apr-98 12:21:28 +sysmessage.rexx

3437 878 74.4% 10-Apr-98 12:21:34 +AMarquee_protos.h

1313 449 65.8% 10-Apr-98 12:21:34 +amarquee.fd

4247 1725 59.3% 10-Apr-98 12:21:34 +AMarquee.h

1881 513 72.7% 10-Apr-98 12:21:34 +AMarquee_pragmas.h

10614 2704 74.5% 10-Apr-98 12:21:34 +Session.h

24116 5957 75.2% 10-Apr-98 12:21:28 +Install_AMarquee

612 329 46.2% 10-Apr-98 12:21:28 +Install_AMarquee.info

7307 2124 70.9% 10-Apr-98 12:21:34 +AMarquee.i

4232 602 85.7% 10-Apr-98 12:21:36 +AMarquee.lib

-------- ------- ----- --------- --------

566088 237021 58.1% 10-Apr-98 12:22:12 49 files

No charge may be made for this program, other than a reasonable

copying fee, and/or the price of the media.

1.11 What you need

- Kickstart V37 (WorkBench 2.04) or higher

- Inet225, or AmiTCP3.0b2+ (or an AmiTCP compatible TCP stack,

such as Miami, or TermiteTCP)

- ARexx, PCQ Pascal, or a C or C++ compiler, or even just

an assembler, if you wish to write AMarquee programs.

AMarquee 8 / 80

1.12 introduction

Please read the History section for information on changes

and bug-fixes.

AMarquee is a system for broadcasting information between Amigas. It

uses a server-hub information storage model, where any Amiga program may

upload information to the central server, and other Amiga programs may

download it. Information is stored on the server in a filesystem-like

structure, with each client given its own "directory" in the tree. Each

client may read or write to its own directory on the server, and may read

the directories of the other clients (assuming they allow it access).

The AMarquee system was designed in such a way that "polling" of

information to detect updates should never be necessary. Instead,

each client may subscribe to a set of entries in the server, and

whenever the subscribed data is updated, the client will be notified

of the change. This technique helps keep bandwidth usage as low as

possible.

As alternatives to the information-storage model, AMarquee

features a message-passing model and a direct-connect model. You may now

easily pass data messages to other clients, through the

AMarquee server, or connect directly to other AMarquee clients and

send data straight to them, without bothering the server.

Also, the AMarquee system is heavily multithreaded. A client-side

thread is started in the background for each connection made with

amarquee.library, and a new server thread is created on the server

for each connection received. This multithreading allows the user

program to do other things while data is being sent or received,

and avoids bottlenecks on the server computer. The multithreading

is completely transparent to the user program. Furthermore, with

amarquee.library, no socket programming knowledge is necessary.

All the user’s code needs to do is make amarquee.library calls and

Wait() on a supplied Exec-style MsgPort for data.

Lastly, both the AMarquee client code and the Amarqueed server code

are re-entrant, to minimize memory usage.

AMarquee 9 / 80

1.13 Using AMarqueed

AMarqueed is the "server" portion of the AMarquee system. Its job is

to act as the client program’s "proxy" or representative on the

server computer. It stores data that the client uploads, and returns

data that the client has requested, either directly or in response

to "subscribed" data having been changed.

Once you have AMarqueed installed , it should mostly take care of

itself. However, you can (and probably should) specify some

parameters for AMarqueed to use. AMarqueed looks for the following

ENV variables on startup:

- AMARQUEED_MAXMEM

If set, the value of this variable will be taken as the maximum number

of kilobytes each daemon is allowed to allocate. For example, typing

"setenv AMARQUEED_MAXMEM 45" limits each connection to allocating

no more than 45K of memory for data storage.

- AMARQUEED_MINFREE

If set, the value of this variable will be taken as the size of a

"safety buffer" of free memory. No AMarqueed process will be able to

allocate more memory unless at least this much free memory exists in

the system. For example, entering "setenv AMARQUEED_MINFREE 100"

ensures that AMarqueed processes will never use up the last 100K

of system memory.

- AMARQUEED_MAXCONN

If set, this variable determines the maximum number of simultaneous

connections that will be allowed from any given host. This can be

used to prevent any one computer from "hogging" the server’s capacity.

- AMARQUEED_TOTALMAXCONN

If set, this variable determines the maximum number of simultaneous

AMarqueed connections allowed. For example, entering

"setenv AMARQUEED_TOTALMAXCONN 5" will ensure that there are never

more than 5 AMarqueed processes running at once.

- AMARQUEED_PRIORITY

If you wish the AMarqueed server tasks to run at a particular

priority, you can set this variable to the priority you want

them to run at. If this is not set, AMarqueed daemons will run

at the priority AmiTCP launches them with (-10 on my system).

- AMARQUEED_PINGRATE

In order to keep the shared data tree free of clutter, AMarqueed

AMarquee 10 / 80

makes sure each client is still there by sending it an empty

transaction every so often. While these transactions are transparent

to user programs, they do have a slight impact on network and

CPU usage. This ENV variable allows you to set the number of

minutes of idle time that will elapse before a null transaction

is sent. For example, setting AMARQUEED_PINGRATE to 5 will cause

a null transaction be sent to each client after 5 minutes

of idle time. Then, if the client has not responded to the

transaction within 5 more minutes, it will be removed from the system.

The default rate is every 3 minutes.

- AMARQUEED_DEBUG

If set, each AMarqueed session will open a debug console on startup,

showing various state information. [Note that you must do something

like "setenv AMARQUEED_DEBUG 1" for this to take effect, just entering

"setenv AMARQUEED_DEBUG" won’t do it.]

- AMARQUEED_FAKECLIENT

This option may be set to a host/program name path (e.g.

"/fakehost/fakeprogram", in which case the AMarquee server

will attempt to give incoming connections this designation

instead of their actual one. This feature allows you to

easily simulate connections from various hosts when debugging

an AMarquee program. It should not be set during normal

use.

- AMARQUEED_MAXQUEUEDMESSAGES

This option allows you to set a limit on the number of

(internal) messages that an AMarqueed client may have

pending at any one time. If an AMarqueed daemon exceeds

this limit, it will immediately quit and disconnect its client.

This is useful in situations where some clients are connecting

over TCP connections that are too slow or lossy to carry the

amount of data they are being sent by other clients. When this

happens, their server daemon’s outgoing message queue

can grow quite large, unless you limit it with this

variable. The default setting is unlimited. If you do

set this variable, it’s a good idea to set it to at least 50,

so that clients aren’t knocked off too easily.

==

==== ====

==== PRIVILEGE SETTINGS ====

AMarquee 11 / 80

==== ====

==

Below is the list of environment variables that are used to

specify which clients are allowed which privileges. You can

use these to specify how much access any given computer or

client type may have on your server.

All of these variables should be set to values of the same

format. The format looks like this:

/hostExp/progExp

Where hostExp is a standard Amiga wildcard expression designating

an Internet hostname (or group of hostnames), and progExp is a

standard Amiga wildcard expression designating a client name

(or group of client names). This format can be used to designate

arbitrarily complex groups of connection types. Here are some

examples of how this format can be used:

/#?.com/QAmiTrack -- means all connections coming from hostnames

ending in .com, where the program is logging

in with the ID "QAmiTrack".

/evil.hackers.com/#? -- denotes all connections coming from

host evil.hackers.com (no matter what

the login name of the program is)

/#?/~(EvilApp) -- specifies connections from any computer,

as long as the client isn’t logging in as

"EvilApp"

/(computer1.ucsd.edu|computer2.ucsd.edu|computer3.ucsd.edu)/#?

-- This specifies only connections coming from the hosts

computer1.ucsd.edu, computer2.ucsd.edu, or computer3.ucsd.edu

Note the initial ’/’ character! It is required.

Below are the environment variables that may be set as

described above.

- AMARQUEED_BANNED

With this parameter, you can indicate which clients should not

be allowed to connect to your AMarqueed daemon at all. (For example,

a friend of mine was getting too much Netris traffic on his server,

so he did a "setenv AMARQUEED_BANNED /#?/#?Netris" to ban Netris

from his machine.

If one BANNED variable isn’t enough for you, v1.46+ of AMarqueed will

also look at the env variables AMARQUEED_BANNED0, AMARQUEED_BANNED1,

..., AMARQUEED_BANNED9. Clients that match any of the BANNED env

AMarquee 12 / 80

variables will not be allowed to connect.

- AMARQUEED_KILLCLIENTS

An AMarquee server is a law-and-order sort of place, and clients

are discouraged from doing mean things to other clients. Sometimes,

however, a little cruelty is justified and a client needs to die.

This variable lets you give some clients a licence to kill the

server daemons, and hence the AMarquee connections of other clients.

- AMARQUEED_SENDSYSMESSAGES

New in v1.45 of AMarquee is the ability to send "system messages".

System messages are a special type of message, in that they should

consist of ASCII text (256 chars or less), and may be sent to any

client at any time (as long as that client has requested the

QPRIV_GETSYSMESSAGES privilege). They are to be used to notify

users of server events (such as imminent shutdown, etc). This

variable lets you specify which clients may send system messages .

- AMARQUEED_ADMIN

This env variable lets you specify which clients may dynamically

reconfigure the AMarquee server, by remotely setting many of the

AMARQUEED_* environment variables. This is a very powerful

privilege, since it can be used to gain all other privileges!

There are some restrictions on what clients with AMARQUEED_ADMIN

access can do, but nonetheless you should be very cautious in

giving out this privilege!

- AMARQUEED_ALLPRIVILEGES

Specifying a client under this variable is the same as specifying

that client in ALL the above variables. This one immediately

gives its clients EVERY PRIVILEGE! So be careful with this

one, too!

1.14 Using amarquee.library functions from ARexx scripts

As of version 46, the functions within amarquee.library are

accessible from ARexx scripts. To make amarquee.library’s

functions accessible to your ARexx script, you should add the

following line to the beginning of your script:

call addlib(’amarquee.library’, 0, -204, 46)

(Note that the second argument MUST be -204, and NOT -30 like it

is with other libraries! The third argument is the minimum

version number; you should require at least amarquee.library

AMarquee 13 / 80

v46, as earlier versions have no ARexx support)

Once this call returns, you can use amarquee.library’s functions

pretty much the same way as you would within a C program,

except that arguments are passed and results are returned in

the standard ARexx manner, as strings.

There are some minor differences in usage between the C and

ARexx versions of the functions (mostly the difference is that

some arguments are optional under ARexx). These are noted

in the AREXX NOTES section of the man page for each function.

There are also two new functions that are available only

via ARexx:

GetQMessageField (message, fieldname)

GetNextQMessage (session, timeout, signals)

These are used for doing things that are easy in C but harder

to do in ARexx.

Note that you must be careful when using amarquee.library from

ARexx! In particular, you must ensure that QFreeSession

is called on ALL active QSession’s before your script exits!

Otherwise you risk crashing. Also, all returned QMessages must

have FreeQMessage called on them, or you

will leak memory.

See the ARexx scripts in the TestPrograms subdirectory

for examples of how to use amarquee.library from ARexx.

1.15 Using amarquee.library

Note: amarquee.library was written and compiled using DICE C.

While the library itself should be compatible with programs

written using any standard Amiga compiler, you may have to

slightly modify the included header files to match your

compiler’s tastes.

Introduction to amarquee.library

How to interpret QMessages

The amarquee.library API

The C++ wrapper class

Using amarquee.library from ARexx scripts

AMarquee 14 / 80

1.16 sessionclass

Included with the Amarquee distribution is a C++ "wrapper" class

that you can use if you wish, instead of invoking the amarquee.library

calls directly.

Amarquee.library usage maps nicely to a C++ object:

- Using amarquee.library directly, you allocate a struct QSession,

call functions to which you pass a pointer to your QSession struct,

then call QFreeSession () to free the QSession struct when you

are done.

- Using the Session class, you create a new Session object,

call methods on the Session object, then delete the object

when you are done.

Advantages of using the Session class over the straight C

API include:

- Const correctness. The Session class API uses const where

appropriate.

- Convenient default arguments are implemented where appropriate.

For example, the C call QGo(qsession, 0L) can be written

in as session->go(), saving you a few keystrokes.

- You can put Session objects on the stack, and be sure

that they are properly allocated and freed at the correct times.

- No performance penalty. All Session methods are inline, so

using a Session is really no slower than calling the C functions

directly.

- Since all the code needed to implement the Session class is

included in Session.h, it is easy to modify the Session class

to suit your tastes.

Disadvantages of the Session class:

- It requires a C++ compiler.

- It hasn’t been run-tested. (This is because I don’t have

a C++ compiler on my Amiga) Nonetheless, I am fairly confident

it is bug free, and if you look in Session.h you’ll see why--

almost all the methods are one-line pass-thrus to the C API.

Exception throwing in the Session class:

- Exceptions are only thrown by one method in the Session class--

the class constructor. All other methods register failure (where

applicable) by returning the same return codes that the C API does.

The class constructor will throw a SessionCreationFailedException

AMarquee 15 / 80

(also defined in Session.h) if it cannot allocate the internally

held QSession struct.

- If you are like me and don’t like using exceptions in C++,

there are static methods in the Session class that you can

use to create instead of the Session constructor to allocate

a Session object. These methods are named very similarly

to their C API counterparts, and work the same way: They

return a pointer to a newly allocated Session object on

success, or NULL on failure. See Session.h for more info.

Note that you CANNOT cast a Session to a (struct QSession), nor

can you cast a (Session *) to a (struct QSession *). A Session

object holds a (struct QSession *), but does not derive from it.

Note also that you must still open and close amarquee.library (v47+)

yourself--the Session class does not do it for you.

1.17 api

Library functions for both C and ARexx:

struct QSession * QNewSession (char * hostname, LONG port, char * progname)

struct QSession * QNewSessionAsync (char * hostname, LONG port, char * progname)

struct QSession * QNewHostSession (char * hostnames, LONG * port, char * prognames)

struct QSession * QNewServerSession (char * hostnames, LONG port, char * prognames)

LONG QFreeSession (struct QSession * session)

LONG QDebugOp (struct QSession * session, char * string)

LONG QGetOp (struct QSession * session, char * wildpath, LONG maxBytes)

LONG QDeleteOp (struct QSession * session, char * wildpath)

LONG QRenameOp (struct QSession * session, char * path, char * label)

LONG QSubscribeOp (struct QSession * session, char * wildpath, LONG maxBytes)

LONG QGetAndSubscribeOp (struct QSession * session, char * wildpath, LONG maxBytes)

LONG QSetOp (struct QSession * session, char * path, void * buffer, ULONG bufferLength)

LONG QStreamOp (struct QSession * session, char * path, void * buffer, ULONG bufferLength)

LONG QClearSubscriptionsOp (struct QSession * session, LONG which)

LONG QPingOp (struct QSession * session)

LONG QInfoOp (struct QSession * session)

LONG QSetAccessOp (struct QSession * session, char * newAccess)

LONG QSetMessageAccessOp (struct QSession * session, char * newAccess, LONG maxBytes)

LONG QMessageOp (struct QSession * session, char * hosts, UBYTE * buffer, ULONG bufferLength)

LONG QSysMessageOp (struct QSession * session, char * hosts, char * message)

LONG QRequestPrivilegesOp (struct QSession * session, ULONG privBits)

AMarquee 16 / 80

LONG QReleasePrivilegesOp (struct QSession * session, ULONG privBits)

LONG QKillClientsOp (struct QSession * session, char * hosts)

LONG QSetParameterOp (struct QSession * session, char * paramName, char * newVal)

LONG QGetParameterOp (struct QSession * session, char * paramName)

BOOL QDetachSession (struct QSession * session, ULONG flags)

BOOL QReattachSession (struct QSession * session, ULONG flags)

LONG QGo (struct QSession * session, ULONG flags)

void FreeQMessage (struct QSession * session, struct QMessage * qmsg)

ULONG QNumQueuedPackets (struct QSession * session);

ULONG QNumQueuedBytes (struct QSession * session);

char * QErrorName (struct QSession * session, LONG statusCode);

Library functions for ARexx only:

GetQMessageField (message, fieldname)

GetNextQMessage (session, timeout, signals)

1.18 usingintro

The AMarquee library allows you to do network broadcasting in an

asynchronous, multithreaded manner, with almost no knowledge of

TCP programming. It does this by creating a background process

that handles the TCP transmission and reception for you, and sends

you messages (called QMessages) to notify you of data you have

recieved. Each of the Q*Op() functions in AMarquee.library creates

a message with your data in it, and sends it to the TCP thread

for queueing and eventual transmission. With this setup, your code

need never wait while data is transmitted or recieved, unless it

wants to.

It is important to understand how data is accessed in the AMarquee

system. All AMarquee public data is stored in a tree on the server,

and each node in the tree has a name, which is a null-terminated string.

Each node may be referenced via a "regular node path string", which is

somewhat like a UNIX file path. Each client program that connects to

the AMarquee server is automatically given its own "directory" node in

the tree, based on the IP name of the computer it is running on, and

the name it has chosen for itself. Thus, if you are running an

AMarquee-based client program on a computer named mycomputer.mycompany.com,

and it connects to the server as "MyProgram", then the program’s

"home directory" would be

/mycomputer.mycompany.com/MyProgram

AMarquee 17 / 80

And if you were to add a node named "MyData" to your "directory",

it would show up as

/mycomputer.mycompany.com/MyProgram/MyData

All nodes in the server’s data tree may be accessed or referred to

by strings such as these. Also, each node in the data tree contains

a data buffer of variable size. (So much for the filesystem analogy--

nodes in this tree can be both "files" and "directories" at once!)

This data buffer is a simple, raw array of bytes, and hence may contain

any data you wish to keep in it. The data buffer of the "home directory"

node is hard-coded to a null-terminated string containing the IP number

of your host computer, but the data buffers of all other nodes may be

set arbitrarily.

Also: There is a "short" method of specifying nodes that are

located within your own directory space. If you specify a path

string without an initial slash, it will be assumed you mean

the path is relative to your home node. Thus, specifying

"MyData/DataItem1" as a node path would be the same (for most

purposes) as specifying

/mycomputer.mycompany.com/MyProgram/MyData/DataItem1

Lastly, AMarquee makes heavy use of the Amiga wildcarding system

to specify groups of nodes. Thus, to specify all client programs

running on all connected Amigas, you could use

/#?/#?

Or to specify all entries under the node "MyData", that begin with the

string "DataItem", from computers in Australia, that are connected via

an AMarquee client registered as MyProgram, you could do:

/#?.au/MyProgram/MyData/DataItem#?

All matching and storage of nodes is case sensitive!!

Probably the best way to get a feel for how AMarquee works is

to look at and play around with the example programs in the examples

directory of this distribution.

1.19 qmessages

All communications from the client TCP thread and the AMarquee server

arrive at your application’s doorstep in the form of QMessages.

In C or Pascal, These QMessages can be accessed by your program

by waiting on the qMsgPort field in the QSession struct that is

returned by QNewSession . In ARexx, you can receive QMessages

AMarquee 18 / 80

by calling GetNextQMessage .

Every QMessage you receive should eventually be freed by your

application, via the FreeQMessage call. You must

use this call, and not FreeMem() or ReplyMsg(), when you are done with

QMessages. Any data you wish to keep from the QMessage you must have

been copied out into your own storage area(s) before you free the QMessage.

The QMessage has many fields, all of which bear explanation.

Note that ARexx scripts cannot read these fields directly; instead,

they should use the GetQMessageField function to access them.

Here they are:

- struct Message qm_Msg;

Used for normal Amiga messaging stuff. You shouldn’t need to

access the data within this struct directly.

- LONG qm_ID;

Contains the ID number of a transaction you sent, that this message

is in response to. ID numbers for each transaction are returned by

the Q*Op() calls, and let you determine which QMessages resulted from

which calls. Valid ID numbers are monotonically increasing, starting

at 1. You may see qm_ID’s of 0, if the message is not associated with

any particular transaction (such as when the message was caused by a

QMessageOp executed by another client), or of -1 for certain types of

error.

- int qm_Status;

Contains the error status of the message. For normal operation

results, this will be set to QERROR_NO_ERROR, but if there was

an error, it may be one of the following:

QERROR_UNKNOWN

Something has gone wrong, but nobody knows what! You should

actually never see this.

QERROR_MALFORMED_KEY

You specified a node path that was syntactically incorrect,

or is impossible (such as specifying a node in a directory that

doesn’t exist)

QERROR_NO_SERVER_MEM

The AMarquee server ran out of memory and thus was not able

to perform the operation. This is a serious error, and if

you get it you should not count on any subsequent transactions

in the same message packet having been performed!

QERROR_NO_CONNECTION

AMarquee 19 / 80

The TCP connection to the AMarquee server has been severed. Once

you get this, the only thing you can really do is QFreeSession

your session and start a new one--there is no way to reconnect

a disconnected session.

QERROR_UNPRIVILEGED

You tried to do something you’re not allowed to do (such as

writing to another client’s directory or renaming your root node).

Note that trying to read from the directory of a client who has

excluded you via QSetAccessOp will not result in this error--

rather, you just won’t get any results back. You will also get

this error code if you sent a QMessageOp that no other clients

were willing to receive.

QERROR_UNIMPLEMENTED

You tried to use a feature that I haven’t implemented yet.

You may get this error if you are receiving data in a direct

client-to-client connection and the sending client sends you

a transaction that does not make sense in this context.

(for example, a QSetAccessOp)

QERROR_NO_CLIENT_MEM

Your computer ran out of memory, and thus could not perform

the operation.

QERROR_SYS_MESSAGE

This message is a system message sent to you by a client

with QPRIV_SENDSYSMESSAGES access. The qm_Path field will tell

you who sent it to you, and the qm_Data field is a NULL-terminated

ASCII string that contains the text of the message.

Note that you will only ever see this value of qm_Status if

you have requested QPRIV_GETSYSMESSAGES access.

QERROR_SEND_DONE

This message was sent to you by the AMarquee TCP thread running

on your machine, to let you know that your QGo() packet has

been sent (or at least, that it has been completely handed off

to the TCP Stack’s transmission code). You will only get this QMessage

back if you specified the QGOF_NOTIFY flag in your call to QGo ().

The qm_ID field of this QMessage is the same as the return value

of the QGo () call that caused it to be sent. (This status

type is new for v47 of amarquee.library)

- char * qm_Path;

If the QMessage is returning information about a particular node,

AMarquee 20 / 80

this will point to a NUL-terminated, fully qualified path string

identifying the node. As returned by the AMarqueed server, this

string will never have wildcards in it, and will always be

"absolute" (with the computer and program name explicitely

specified). If no node is being referenced (as in, for example,

error or ping messages), this entry will be NULL.

- void * qm_Data;

If a data buffer is being returned with the QMessage, this will

point to the first byte of the buffer (otherwise it will be NULL).

The data buffer belongs to the TCP thread, and will be freed when

the QMessage is freed. You are allowed to read from or write to

this buffer until you call FreeQMessage on this QMessage.

- ULONG qm_DataLen;

Contains the number of bytes in the qm_Data buffer that is

included with this QMessage.

- ULONG qm_ActualLen;

Contains the size of the data buffer associated with this node,

as it is stored on the server. This value is usually equal to

qm_DataLen, but it may be larger than qm_DataLen if you told

QGetOp or QSubscribeOp to limit the size of data buffers you

receive (via the maxBytes argument).

- ULONG qm_ErrorLine;

If qm_Status is not QERROR_NO_ERROR, this entry will contain the line

number of the command in the AMarqueed source code that triggered

the error. This is to help me in debugging the AMarquee server.

- void * qm_Private;

Points to secret magic stuff used by the TCP thread. Leave

this alone!

1.20 qnewsession

amarquee.library/QNewSession amarquee.library/QNewSession

NAME

QNewSession - Creates a new connection to an AMarqueed server.

SYNOPSIS

#include <clib/amarquee_protos.h>

struct QSession * QNewSession(char * hostname, LONG port, char * progname)

FUNCTION

Creates a new TCP-handling thread and attempts to connect it

AMarquee 21 / 80

to the specified AMarqueed server.

NOTE

This function is synchronous--it will not return until either

a TCP connection has been made to the remote host, or the attempt

has failed. If the connection fails, this function will return

NULL with no side effects.

If a non-NULL QSession is returned, it must be QFreeSession ’d

before you close the amarquee.library.

INPUTS

hostname - The IP name of the computer to connect to. (e.g.

foo.bar.com)

port - The port to connect on. Port 2957 is the "official"

AMarqueed port.

progname - A null-terminated string indicating the name

the client program wishes to use. If another

client from your host has already registered

progname, the server for that client will close

its connection and quit so that your client program

will still be uniquely addressable.

RESULTS

On success, returns a pointer to a QSession struct that should be

passed to the other functions in this API. The QSession struct

also contains a pointer to an exec.library MsgPort that your program

should Wait() on and GetMsg() from to receive QMessages from the

TCP thread. Returns NULL if a connection could not be established.

EXAMPLE

struct QSession * s;

if (s = QNewSession("example.server.com", 2957, "ExampleProgram"))

printf("Connection to example.server.com:2957 was successful\n");

else

printf("Connection failed.\n");

AREXX NOTES

For ARexx, the return value of this method is a string representation

of the pointer to the session struct. If the returned value is equal

to zero, then the call failed. Otherwise, use the return value as a

handle to pass to other amarquee.library functions.

Note that instead of calling Wait() and GetMsg(), you will want

to use amarquee.library’s GetNextQMessage function to receive

incoming QMessages.

AMarquee 22 / 80

AREXX EXAMPLE

session = QNewSession(’example.server.com’, 2957, ’ExampleScript’)

if (session > 0) then say "Connection was successful!"

else say "Connection failed!"

SEE ALSO

QNewSessionAsync , QNewHostSession , QNewServerSession , QFreeSession

1.21 qnewsessionasync

amarquee.library/QNewSessionAsync amarquee.library/QNewSessionAsync

NAME

QNewSessionAsync - Starts a TCP connection thread, returns immediately.

SYNOPSIS

#include <clib/amarquee_protos.h>

struct QSession * QNewSessionAsync(char * hostname, LONG port, char * progname)

FUNCTION

This function works the same as QNewSession , except that instead

of waiting for the TCP connection to be fully established, it returns

immediately.

When (and if) the TCP connection does connect to the target

computer, your program will be notified via a QMessage . This

QMessage will have a qm_ID of zero, contain

your program’s "home directory" as the qm_Path field

(e.g. "/yourhostname/yourprogname"), and have "" as the qm_Data

field.

If the TCP connection fails, you will be sent a QMessage

with the qm_Status field set to QERROR_NO_CONNECTION.

NOTE

If a non-NULL QSession is returned, it must be QFreeSession ’d before

you close the amarquee.library.

You may call QFreeSession() at any time, whether the returned QSession

has connected or not.

Any transactions (Q*Op(), QGo(), etc) that you send to a QSession

that is still connecting will not be processed until after the

TCP connection has been established.

INPUTS

hostname - The IP name of the computer to connect to. (e.g.

foo.bar.com)

port - The port to connect on. Port 2957 is the "official"

AMarquee 23 / 80

AMarqueed port.

progname - A null-terminated string indicating the name

the client program wishes to use. If another

client from your host has already registered

progname, the server for that client will close

its connection and quit so that your client program

will still be uniquely addressable.

RESULTS

On success, returns a pointer to a QSession struct that should be

passed to the other functions in this API. The QSession struct

also contains a pointer to an exec.library MsgPort that your program

should Wait() on and GetMsg() from to receive QMessages from the

TCP thread. Returns NULL if a connection thread could not be established.

EXAMPLE

struct QSession * s;

/* demonstrates how you can Wait() on both the pending connection,

and other events (here, a CTRL-C) at the same time */

if (s = QNewSessionAsync("example.server.com", 2957, "ExampleProgram"))

{

printf("Connecting to example.server.com:2957\n");

while(1)

{

struct QMessage * qMsg;

ULONG signals = (1L << s->qMsgPort->mp_SigBit) | (SIGBREAKF_CTRL_C);

/* Wait for next message from the server */

signals = Wait(signals);

if (signals & (1L << s->qMsgPort->mp_SigBit))

{

while(qMsg = (struct QMessage *) GetMsg(s->qMsgPort))

{

if (qMsg->qm_Status == QERROR_NO_ERROR) printf("Connection established!\n");

if (qMsg->qm_Status == QERROR_NO_CONNECTION) printf("Connection failed.\n");

}

}

if (signals & SIGBREAKF_CTRL_C)

{

printf("User aborted.\n");

break;

}

AMarquee 24 / 80

}

QFreeSession(s);

}

else

printf("Connection thread failed.\n");

AREXX NOTES

For ARexx, the return value of this method is a string representation

of the pointer to the session struct. If the returned value is equal

to zero, then the call failed. Otherwise, use the return value as a

handle to pass to other amarquee.library functions.

Note that instead of calling Wait() and GetMsg(), you will want

to use amarquee.library’s GetNextQMessage function to receive

incoming QMessages.

AREXX EXAMPLE

session = QNewSessionAsync(’example.server.com’, 2957, ’ExampleScript’)

if (session > 0) then say "Call was successful."

else say "Call failed!"

/* Now wait for QMessages with GetNextQMessage... */

SEE ALSO

QNewSession , QNewHostSession , QNewServerSession , QFreeSession

1.22 qnewhostsession

amarquee.library/QNewHostSession amarquee.library/QNewHostSession

NAME

QNewHostSession - Start a TCP thread waiting for connections

on a port.

SYNOPSIS

#include <clib/amarquee_protos.h>

struct QSession * QNewHostSession(char * hostnames, LONG * port, char * prognames)

FUNCTION

This function allows your AMarquee client to accept direct TCP

connections from other AMarquee clients. It will start a new

execution thread, which will listen to the port you specify

until an AMarquee thread attempts to connect to it. When

a thread does connect to its port, it will verify that the

connecting thread matches the criteria specified via the

"hostnames" and "prognames" arguments, and if the connecting

program passes, it will send you a QMessage to tell you that

AMarquee 25 / 80

a connection has been received. This QMessage will have a

qm_ID of zero, and the qm_Path field will contain the path

of the connecting client’s root node. (e.g. "/computername/progname").

Also, the qm_Data field will contain the program’s IP address,

as a string. After this QMessage has been received, you may

send data messages to the connected client via QSetOp , QDeleteOp ,

QPingOp , QStreamOp , or QInfoOp , and receive QMessages in

the normal way. Any other operations will cause the receiving

client to get a QERROR_UNIMPLEMENTED error message.

NOTE

This function will return as soon as the listening port has

been set up. Until someone connects to its port, however,

the QSession returned is "dormant", and any transactions

sent to it will result in QERROR_NO_CONNECTION QMessages.

(Note that you can still QFreeSession the dormant QSession,

if you get tired of waiting for a connection)

Once a connected QSession has been disconnected, it can no longer

be used for anything and should be freed. If you wish to receive

another connection, you will need to call QNewHostSession again.

Don’t forget to call QFreeSession ’d on all allocated

QSessions before you close amarquee.library!

This function requires v38+ of amarquee.library.

INPUTS

hostnames - A regular expression determining which hosts are

allowed to connect to this QSession. For example,

"#?" would allow any host to connect, or "#?.edu"

would allow only hosts from schools to connect.

port - Pointer to a LONG that contains the port to listen on.

Clients who wish to connect to your host session must

specify this port number when they call QNewSession .

If the LONG contains the value 0L, then the TCP stack

will choose an available port for you and write it

into your variable before this function returns.

prognames - A regular expression determining which program names

are allowed to connect to this QSession. The connecting

program’s name is specified by the connecting program

when it calls QNewSession .

RESULTS

On success, returns a pointer to a QSession struct that may be

AMarquee 26 / 80

used with the other functions in this API. The QSession struct

also contains a pointer to an exec.library MsgPort that your program

should Wait() on and GetMsg() from to receive QMessages from the

TCP thread. Returns NULL if a listening port could not be established

(likely because another program was using the port you wanted!).

EXAMPLE

struct QSession * s;

LONG port = 0; /* Let the system choose a port for me */

if (s = QNewHostSession("#?", &port, "#?"))

printf("Now listening for connections on port %li.\n",port);

else

printf("Could not open a new host session.\n");

AREXX NOTES

For ARexx, the return value of this method is a string representing

two numbers: A pointer to the session struct, and the port number

that is being used. The return value of a successful call might look

like this:

"1254115 1024"

If the first number is zero, then the call failed.

Otherwise, use the return value as a handle to pass to other

amarquee.library functions. You may read the port (e.g. second)

number and use it as you see fit (e.g. send it to another client

so they know what port they can connect to you at). You do not

need to remove the port number from the string before passing the

string as a handle to subsequent amarquee.library calls--they

will ignore the extra number.

Note that instead of calling Wait() and GetMsg(), you will want

to use amarquee.library’s GetNextQMessage function to receive

incoming QMessages.

AREXX EXAMPLE

session = QNewHostSession(’example.server.com’, 0, ’ExampleScript’)

if (session > 0) then say "Connection was successful!"

else say "Connection failed!"

SEE ALSO

QNewSession , QNewSessionAsync , QNewServerSession , QFreeSession

AMarquee 27 / 80

1.23 qnewserversession

amarquee.library/QNewServerSession amarquee.library/QNewServerSession

NAME

QNewServerSession - Link to the socket provided to your program

by inetd when you have been launched as

a server daemon by your TCP stack’s inetd.

SYNOPSIS

#include <clib/amarquee_protos.h>

struct QSession * QNewServerSession(char * hostnames, char * prognames)

FUNCTION

This function allows you to create "inetd style" daemon programs

that use amarquee.library to communicate with other amarquee

programs. This function should be called only once, per

execution, near the beginning of your program. It will

return a QSession that you can use to communicate with the

amarquee client that connected to your computer. Your app will

receive an initial message containing the identity of the

connecting program (e.g. "/computer.name/progName") in the qm_Path

field. After that communication takes place in the same

way used by connections made via QNewHostSession .

NOTE

This function will NOT work with the Inet225 version of

amarqueed.library. This is because under Inet225 the inherited

socket info is passed via main’s() argc and argv parameters, which

this call does not have access to.

Email me if you need this call to work under Inet225; if there

is demand I will try and work out a solution.

This function will return NULL if your program was not started

by inetd, or if the connecting program does not meet the

criteria specified in the arguments to this function.

Once a connected QSession has been disconnected, it can no longer

be used for anything and should be freed. You cannot receive a

second connection with this function (a second connection will

launch a second instance of your program instead).

Don’t forget to call QFreeSession ’d on all allocated

QSessions before you close amarquee.library!

This function requires v38+ of amarquee.library.

For an example of how to use this function, see the file

AMarquee 28 / 80

AMarqueeServer.c in the examples directory .

INPUTS

hostnames - A regular expression determining which hosts are

allowed to connect to this QSession. For example,

"#?" would allow any host to connect, or "#?.edu"

would allow only hosts from schools to connect.

prognames - A regular expression determining which program names

are allowed to connect to this QSession. The connecting

program’s name is specified by the connecting program

when it calls QNewSession .

RESULTS

On success, returns a pointer to a QSession struct that may be

used with the other functions in this API. The QSession struct

also contains a pointer to an exec.library MsgPort that your program

should Wait() on and GetMsg() from to receive QMessages from the

TCP thread. Returns NULL if a listening port could not be established

(likely because another program was using the port you wanted!).

EXAMPLE

struct QSession * s;

if (s = QNewServerSession("#?", "#?"))

printf("Got the session from InetD. Ready to go!\n");

else

printf("Couldn’t get session from InetD.\n");

AREXX NOTES

For ARexx, the return value of this method is a string representation

of the pointer to the session struct. If the returned value is equal

to zero, then the call failed. Otherwise, use the return value as a

handle to pass to other amarquee.library functions.

Note that instead of calling Wait() and GetMsg(), you will want

to use amarquee.library’s GetNextQMessage function to receive

incoming QMessages.

Note that in order for this command to be useful, your ARexx script

must have been launched by inetd. I’m not sure how that is done...

AREXX EXAMPLE

session = QNewServerSession(’#?’, ’#?’)

if (session > 0) then say "Call was successful!"

else say "Call failed!"

SEE ALSO

QNewSession , QNewSessionAsync , QNewHostSession , QFreeSession

AMarquee 29 / 80

1.24 qfreesession

amarquee.library/QFreeSession amarquee.library/QFreeSession

NAME

QFreeSession - Closes the given connection to an AMarquee server.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QFreeSession(struct QSession * session)

FUNCTION

Closes the given AMarquee connection, terminates the

associated TCP handling thread, and cleans up.

NOTE

You MUST QFreeSession every session that you created with

any of the QNew*Session() functions, before closing

amarquee.library! Otherwise, you will quickly receive a visit

from the Guru, as the TCP thread associated with the QSession

tries to execute code that is no longer loaded into memory...

INPUTS

session - Pointer to the QSession struct you wish to free.

RESULTS

QFreeSession always succeeds. However, QFreeSession returns

a QERROR_* code describing any earlier problems--usually the

return code is QERROR_NO_ERROR, but if there was a problem in

connecting this QSession, or an exceptional event (such as the

TCP stack shutting down) occurred, then the return value might

be one of the following:

QERROR_NO_CLIENT_MEM - The client computer ran out of memory.

QERROR_NO_TCP_STACK - Couldn’t connect because the TCP stack

was not running.

QERROR_HOSTNAME_LOOKUP - The name server failed to find the

requested host.

QERROR_ABORTED - The TCP thread received a CTRL-C signal.

This happens when the TCP stack is shutting

down (at least under AmiTCP), or if the user

is monkeying around with system monitors. ;)

QERROR_NO_SERVER - The requested host refused the TCP connection,

most likely because an AMarquee server was not

installed properly on that machine.

QERROR_NO_INETD - QNewServerSession detected that InetD was

AMarquee 30 / 80

not what invoked the user program.

QERROR_ACCESS_DENIED - The AMarquee server program refused to accept

the connection.

This return value is for informational purposes only; no specific

actions are required based on the value returned.

EXAMPLE

struct QSession * s;

if (s = QNewSession("example.server.com", 2957, "ExampleProgram"))

{

LONG err;

/* ... do stuff with the session here ... */

/* ... */

err = QFreeSession(s);

if (ret != QERROR_NO_ERROR)

printf("Error connecting session: %s\n",QErrorName(err));

}

AREXX NOTES

Note that it is *critical* that your script call this function

for each active QSession, before the script terminates! Otherwise,

the connection threads will hang around and probably crash the

computer. The best way to make sure that all QSessions are freed

is to use ARexx’s "signal on" exception handling to clean up.

AREXX EXAMPLE

signal on break_c

session = QNewSession(’example.server.com’, 2957, ’exampleRexx’)

if (session > 0) then do

/* ... */

break_c:

call QFreeSession(session)

end

SEE ALSO

QNewSession , QNewSessionAsync , QNewHostSession , QNewServerSession

1.25 qdetachsession

amarquee.library/QDetachSession amarquee.library/QDetachSession

NAME

QDetachSession - Removes the messaging connection between the given

QSession and the user process that created it.

AMarquee 31 / 80

SYNOPSIS

#include <clib/amarquee_protos.h>

BOOL QDetachSession(struct QSession * session, ULONG flags)

FUNCTION

When a QSession is created, it is implicitely coupled with

(a.k.a. "attached to") the process that created it. That is to

say, only the process that created the QSession will be able to

successfully receive QMessages from that QSession. However,

there are some cases where it would be convenient to "hand off"

a QSession from one process to another. In order to do this,

you must first call QDetachSession on the session in the process

that created it, then call QReattachSession on the session

in the process you wish to hand the QSession to.

NOTE

This function requires v47 of amarquee.library.

This function is only useful if you want to pass QSessions

from one process to another. Most AMarquee programs won’t

need to use it.

Once you have detached a QSession, there are special rules

you must follow. These rules are:

- Only the process that is attached to a QSession may

call QDetachSession() on it.

- The qMsgPort field of a detached QSession is NULL.

As such, you may not Wait() or GetMsg() or otherwise

access the QSession’s qMsgPort field in any way (until

you reattach the QSession, anyway). When the QSession

is reattached, the qMsgPort field will have a new value

(so don’t store the old value, as it becomes invalid

when QDetachSession() is called)

- An unattached QSession may be freed by any process.

Attached QSessions may only be freed by the process they

are attached to. Attempting to free a QSession that

is attached to another process will most likely hang

or crash your process.

- All AMarquee functions (except GetNextQMessage in ARexx)

may be called on a detached QSession, but you won’t be

able to get results (i.e. QMessages) back from it until

the QSession has been reattached.

- All QMessages that the detached QSession generates will

AMarquee 32 / 80

be stored in an internal queue, and will be made available

when the QSession is reattached. That is to say, events

will not be "dropped" just because a QSession is detached.

(which means if you leave a QSession detached for a long time,

it may build up quite a large queue of stored QMessages

and eat up lots of memory)

- It’s (still) not safe to let multiple processes accessing a

QSession simultaneously. That is, the Q*Op() methods should

be serialized, and the Wait()’ing and GetMsg()’ing should

only be done by the one thread that the QSession is attached

to.

Finally, detaching or reattaching a QSession to a process

is a synchronous operation, so if the TCP thread is busy

shovelling lots of data around, it may take a while for

this function to return.

INPUTS

session - Pointer to the QSession struct you wish to detach.

flags - Reserved for future use. Always set to 0L for now.

RESULTS

Returns TRUE on success, FALSE on failure. (Failure occurs

if there is not enough memory, or if the QSession was already

detached)

EXAMPLE

See the included program AMarqueeDebugMultiThread.c for

a full working example of how to use this function.

struct QSession * s;

/* ... In thread one ... */

if (s = QNewSession("example.server.com", 2957, "ExampleProgram"))

{

/* ... do stuff with the session here ... */

if (QDetachSession(s, 0L))

{

GiveSessionToAnotherThread(s);

}

else printf("Uh oh, QDetachSession failed!\n");

}

/* ... In thread two ... */

s = GetSessionFromFirstThread(); /* using message passing or whatever */

AMarquee 33 / 80

if (QReattachSession(s, 0L))

{

/* ... Do stuff with the QSession ... */

QFreeSession(s);

}

else printf("Oh dear, QReattachSession failed!\n");

AREXX NOTES

QDetachSession() is implemented for ARexx, although I have

yet to see a multithreaded ARexx script. Perhaps it might

come in handy for passing a QSession from one ARexx script

to another, though.

The ARexx function returns 1 on success, 0 on failure.

if (QDetachSession(session) == 0) then

say "uh oh, session detach failed!"

end

SEE ALSO

QReattachSession , QFreeSession

1.26 qreattachsession

amarquee.library/QReattachSession amarquee.library/QReattachSession

NAME

QReattachSession - Creates a messaging connection between the

given detached QSession and calling process.

SYNOPSIS

#include <clib/amarquee_protos.h>

BOOL QReattachSession(struct QSession * session, ULONG flags)

FUNCTION

Once a QSession has been detached from its process, this

function may be called by any process in order to create

a messaging association between the calling process and the

QSession.

After this function returns (successfully), the QSession

is no longer detached, and is operable by the calling

process, just as if the calling process had created the

QSession itself. In particular, the QSession’s qMsgPort

field will no longer be NULL: rather, it will be set to point to

a MsgPort that the calling process can then Wait() on for QMessages.

NOTE

AMarquee 34 / 80

This function requires v47 of amarquee.library.

When a QSession is first created, it is already attached

to its creating process. Thus, this function is only useful

if you want to pass QSessions from one process to another.

Most AMarquee programs won’t need to use it.

See QDetachSession for the list extra rules that apply

to detached QSession’s.

Reattaching a QSession to a process is a synchronous

operation, so if the TCP thread is busy shovelling lots

of data around, it may take a while for this function to return.

INPUTS

session - Pointer to the QSession struct you wish to reattach.

flags - Reserved for future use. Always set to 0L for now.

RESULTS

Returns TRUE on success, FALSE on failure. (Failure occurs

if there is not enough memory, or if the QSession was already

attached to a process)

EXAMPLE

See the included program AMarqueeDebugMultiThread.c for

a full working example of how to use this function.

struct QSession * s;

/* ... In thread one ... */

if (s = QNewSession("example.server.com", 2957, "ExampleProgram"))

{

/* ... do stuff with the session here ... */

if (QReattachSession(s, 0L))

{

GiveSessionToAnotherThread(s);

}

else printf("Uh oh, QReattachSession failed!\n");

}

/* ... In thread two ... */

s = GetSessionFromFirstThread(); /* using message passing or whatever */

if (QReattachSession(s, 0L))

{

/* ... Do stuff with the QSession ... */

QFreeSession(s);

}

AMarquee 35 / 80

else printf("Oh dear, QReattachSession failed!\n");

AREXX NOTES

QReattachSession() is implemented for ARexx, although I have

yet to see a multithreaded ARexx script. Perhaps it might

come in handy for passing a QSession from one ARexx script

to another, though.

The ARexx function returns 1 on success, 0 on failure.

if (QReattachSession(session) == 0) then

say "uh oh, session reattach failed!"

end

SEE ALSO

QDetachSession , QFreeSession

1.27 qnumqueuedpackets

amarquee.library/QNumQueuedPackets amarquee.library/QNumQueuedPackets

NAME

QNumQueuedPackets - Returns (approximately) the number of messages

awaiting processing by the QSession’s TCP thread.

SYNOPSIS

#include <clib/amarquee_protos.h>

ULONG QNumQueuedPackets(struct QSession * session)

FUNCTION

Returns the number of messages that have been sent to the TCP

thread for this QSession, but have not yet been processed by the

TCP thread. This value includes one point for each transaction

generated by the Q*Op() calls, as well as one point per QGo() call.

No thread synchronization is done, so the value returned should be

considered approximate only. This function can be used to see

if packets are being queued faster than they are being sent, and

thus take corrective action before too much memory is allocated for

queued packets.

INPUTS

session - Pointer to the QSession struct you want information for.

RESULTS

Number of queued messages.

EXAMPLE

struct QSession * s;

if (s = QNewSession("example.server.com", 2957, "ExampleProgram"))

AMarquee 36 / 80

{

ULONG numQueued;

/* ... */

numQueued = QNumQueuedPackets(s);

printf("Currently there are %i packets awaiting transmission\n",numQueued);

/* ... */

QFreeSession(s);

}

SEE ALSO

QNumQueuedBytes

1.28 qerrorname

amarquee.library/QErrorName amarquee.library/QErrorName

NAME

QErrorName - Returns an ASCII string describing a QERROR_* code

SYNOPSIS

#include <clib/amarquee_protos.h>

char * QErrorName(LONG errno)

FUNCTION

Returns a pointer to a string that describes the QERROR_* code

passed in as an argument.

INPUTS

errno - a QERROR_* error code.

RESULTS

Pointer to a string describing the error. This string is owned

by amarquee.library and should be considered read-only. It will

be valid until amarquee.library is closed.

EXAMPLE

printf("Error QERROR_NO_CLIENT_MEM means %s\n",

QErrorName(QERROR_NO_CLIENT_MEM));

AREXX EXAMPLE

say "Error QERROR_NO_CLIENT_MEM means: " || QErrorName(QERROR_NO_CLIENT_MEM)

1.29 qnumqueuedbytes

amarquee.library/QNumQueuedBytes amarquee.library/QNumQueuedBytes

NAME

QNumQueuedBytes - Returns (approximately) the number of bytes of

AMarquee 37 / 80

user data are awaiting transmission by the

QSession’s TCP thread.

SYNOPSIS

#include <clib/amarquee_protos.h>

ULONG QNumQueuedBytes(struct QSession * session)

FUNCTION

Returns the number of bytes of data that have been sent to the TCP

thread for this QSession, but have not yet been sent to the TCP stack

by the TCP thread. This value does not include any "overhead"

introduced by the AMarquee system messages or headers--it only

tracks the sum of sizes of the user’s queued data buffers.

No thread synchronization is done, so the value returned should be

considered approximate only. This function can be used to see

if bytes are being queued faster than they are being sent, and

thus take corrective action before too much memory is allocated for

queued packets.

INPUTS

session - Pointer to the QSession struct you want information for.

RESULTS

Number of bytes currently being used to store queued transactions.

EXAMPLE

struct QSession * s;

if (s = QNewSession("example.server.com", 2957, "ExampleProgram"))

{

ULONG numQueued;

/* ... */

numQueued = QNumQueuedBytes(s);

printf("Currently there are %i bytes of data awaiting transmission\n",numQueued);

/* ... */

QFreeSession(s);

}

SEE ALSO

QNumQueuedPackets

1.30 qdebugop

amarquee.library/QDebugOp amarquee.library/QDebugOp

NAME

QDebugOp - Sends a debug string to the AMarquee server.

AMarquee 38 / 80

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QDebugOp(struct QSession * session, char * string)

FUNCTION

Causes the AMarquee server to display the given string

in its debug output window, if the debug output window is

open.

NOTE

Probably not all that useful!

INPUTS

session - The session to send the debug op to.

string - The debug string to send to the server.

RESULTS

Returns the assigned ID number for the debug operation on

success, or 0 on failure.

EXAMPLE

LONG transID;

if (transID = QDebugOp(session, "Just a debug string"))

printf("Debug op succeeded, was given id #%li\n",transID);

else

printf("Debug op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QDebugOp(session, ’An ARexx debug string’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo

1.31 qgetop

amarquee.library/QGetOp amarquee.library/QGetOp

NAME

QGetOp - Retrieve a set of entries from the AMarquee server.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QGetOp(struct QSession * session, char * wildpath, LONG maxBytes)

FUNCTION

This function instructs the AMarquee server to retrieve the

data associated with the given wildpath and download it.

Once the results are downloaded, they will be sent to your

AMarquee 39 / 80

process asynchronously as QMessages .

NOTE

It is sometimes difficult to tell when your QGetOp query

is complete and you have received all your results from the

query. Since each op is processed in order, you can do this

by sending a QPingOp after the QGetOp, or by specifying

TRUE for the sendSync argument in the QGo call. Then when

you get the ping packet, you know your query has finished.

INPUTS

session - The session to send the get op to.

wildpath - The path of the data items you wish to retrieve.

You may include wildcards to retrieve multiple items.

maxBytes - The maximum number of bytes of data you wish to

recieve with each item. Larger data buffers will be

truncated to this length. Since data items can be

arbitrarily large, you can use this to avoid unpleasant

surprises. Specifying -1 for this argument will

allow any size data to be downloaded.

RESULTS

Returns the assigned ID number for the get operation on success,

or 0 on failure. Data that is retrieved is sent asynchronously,

as QMessages, to session->qMsgPort. A QGetOp that does not

find any matching data items is not considered an error, so it

is possible that no messages will be sent in response to this op.

EXAMPLE

LONG transID;

/* Get nodes in all clients’ home directories named testNode */

if (transID = QGetOp(session, "/#?/#?/testNode", -1))

printf("Get op succeeded, was given id #%li\n",transID);

else

printf("Get op failed. (no memory?)\n");

AREXX NOTES

In ARexx, the third argument is optional. If it is not

specified, -1 (no size limit) will be assumed.

AREXX EXAMPLE

transID = QGetOp(session, ’/#?/#?/testNode’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo , FreeQMessage , QSubscribeOp

AMarquee 40 / 80

1.32 qdeleteop

amarquee.library/QDeleteOp amarquee.library/QDeleteOp

NAME

QDeleteOp - Delete the given set of entries from the Amarquee server.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QDeleteOp(struct QSession * session, char * wildpath)

FUNCTION

This function tells the AMarquee server to remove and free

the entries stored in wildpath.

This function may also be used in direct client-to-client

connections (as created via QNewSession and QNewHostSession),

in which case the other client will receive a QMessage with

qm_Data equal to NULL.

NOTE

You may only remove entries in your own directory. Attempting

to remove other people’s data will result in you being sent

a QERROR_UNPRIVILEGED error QMessage .

This function will also immediately delete any streaming

buffers that were created for the given node(s) via QStreamOp .

To ensure that all stream updates were received, you may

want to do a QGo (QGOF_SYNC) and wait for the returned

sync QMessage before QDeleteOp’ing the node(s).

INPUTS

session - The session to send the delete op to.

wildpath - The path of the data items you wish to remove.

You may include wildcards to remove multiple items.

RESULTS

Returns the assigned ID number of the delete operation on success,

or 0 on failure. Any server-side errors will be sent asynchronously

as QMessages .

EXAMPLE

LONG transID;

if (transID = QDeleteOp(session, "myNode"))

printf("Delete op succeeded, was given id #%li\n",transID);

else

printf("Delete op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QDeleteOp(session, ’myNode’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo

AMarquee 41 / 80

1.33 qrenameop

amarquee.library/QRenameOp amarquee.library/QRenameOp

NAME

QRenameOp - Rename a data entry to another name.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QRenameOp(struct QSession * session, char * path, char * label)

FUNCTION

This function tells the AMarquee server to rename a node to another

label. Nodes may only be renamed in their current directory;

they can not be moved to another directory with this command.

NOTE

Other clients will see this operation as a deletion of the old

node and the creation of the new one.

Also note that while "path" should be a regular node path name,

"label" should just be just the name of the node itself--the rest

of the path is assumed to be the same.

You can only rename nodes in your own directory tree.

INPUTS

session - The session to send the rename op to.

path - The pathname of the node to rename

label - The new label the node is be renamed to.

RESULTS

Returns the assigned ID number of the rename operation on success,

or 0 on failure. Any server-side errors will be sent asynchronously

as QMessages .

EXAMPLE

LONG transID;

/* Changes node /myHost/myProgram/myDir/node1 into

/myHost/myProgram/myDir/node2 */

if (transID = QRenameOp(session, "myDir/node1", "node2"))

printf("Rename op succeeded, was given id #%li\n",transID);

else

printf("Rename op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QRenameOp(session, ’myDir/node1’, ’node2’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo

AMarquee 42 / 80

1.34 qsubscribeop

amarquee.library/QSubscribeOp amarquee.library/QSubscribeOp

NAME

QSubscribeOp - Start watching the given data items for updates.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QSubscribeOp(struct QSession * session, char * wildpath, LONG maxBytes)

FUNCTION

This function tells the AMarquee server that your client has

a continuing interest in the given data item(s) specified in

"wildpath". When any items meeting the pattern specified in

"wildpath" are created, changed, or deleted, you will be sent

QMessages reflecting their new contents.

(Nodes being deleted will result in you receiving a QMessage

with qm_Data being NULL.)

NOTE

This function will not cause any data to be sent to you until

a change in the data’s state occurs. If you are just starting

up your session and wish to get the full current state of the

data, you should probably send a QGetAndSubscribeOp

instead.

If a client whose data you are watching disconnects, you will

get messages indicating that each node you are watching has

been deleted. (If you want to know for sure that a disconnection

is taking place and not just a bunch of manual deletions, watch

the client’s root node (e.g. "/progName/clientName")--this node

will only ever be deleted when the client disconnects.

INPUTS

session - The session to send the subscribe op to.

wildpath - The regular path name indicating which items you are

interested in. Regular expressions are allowed.

maxBytes - Works similarly to the maxBytes argument in QGetOp .

If the data portion of entries sent to you is longer

than "maxBytes", it will be truncated to maxBytes

bytes. Set this to -1 to allow any size data to be

sent.

RESULTS

Returns the assigned ID number of the subscribe operation on

AMarquee 43 / 80

success, or 0 on failure. Any server-side errors will be sent

asynchronously as QMessages . Data QMessages resulting from this

command may continue to be sent indefinitely, or until you cancel

your subscription with QClearSubscriptionOp .

EXAMPLE

LONG transID;

/* Tells AMarqueed to send us a message whenever a program

named ExampleProgram changes a node named data in its home dir */

if (transID = QSubscribeOp(session, "/#?/ExampleProgram/data", -1))

printf("Subscribe op succeeded, was given id #%li\n",transID);

else

printf("Subscribe op failed. (no memory?)\n");

AREXX NOTES

In ARexx, the third argument is optional. If it is not specified,

it defaults to -1 (e.g. no size limit).

AREXX EXAMPLE

transID = QSubscribeOp(session, ’/#?/ExampleProgram/data’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo , QGetAndSubscribeOp , QClearSubscriptionOp

1.35 qgetandsubscribeop

amarquee.library/QGetAndSubscribeOp amarquee.library/QGetAndSubscribeOp

NAME

QGetAndSubscribeOp - Get the given data items, and start watching them.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QGetAndSubscribeOp(struct QSession * session, char * wildpath, LONG maxBytes)

NOTE

This function required v46 of amarquee.library, and v46

of AMarqueed.

FUNCTION

This function is a combination of the QGetOp () and QSubscribeOp ()

methods. Calling this function is the same as calling QGetOp ()

followed by QSubscribeOp (), with the same arguments. This function

is handy when you need to know the current state of some data

and also want to be notified when the data changes.

The advantages of this function over calling QGetOp () and

AMarquee 44 / 80

QSubscribeOp () separately are twofold: first off, you only

have to remember the ID number of one operation, rather than

two; and secondly, it eliminates the possibility of race

conditions between the two operations.

INPUTS

session - The session to send the get&subscribe op to.

wildpath - The regular path name indicating which items you are

interested in. Regular expressions are allowed.

maxBytes - Works similarly to the maxBytes argument in QGetOp .

If the data portion of entries sent to you is longer

than "maxBytes", it will be truncated to maxBytes

bytes. Set this to -1 to allow any size data to be

sent.

RESULTS

Returns the assigned ID number of the get&subscribe operation on

success, or 0 on failure. Any server-side errors will be sent

asynchronously as QMessages . Data QMessages resulting from this

command may continue to be sent indefinitely, or until you cancel

your subscription with QClearSubscriptionOp .

EXAMPLE

LONG transID;

/* Tells AMarqueed to send us the current value of the item

"data" in "ExampleProgram"’s home directory, and also to

send us a message whenever ExampleProgram changes the value

of "data". */

if (transID = QGetAndSubscribeOp(session, "/#?/ExampleProgram/data", -1))

printf("GetAndSubscribe op succeeded, was given id #%li\n",transID);

else

printf("GetAndSubscribe op failed. (no memory?)\n");

AREXX NOTES

In ARexx, the third argument is optional. If it is not specified,

it defaults to -1 (e.g. no size limit).

AREXX EXAMPLE

transID = QGetAndSubscribeOp(session, ’/#?/ExampleProgram/data’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo , QGetOp , QSubscribeOp , QClearSubscriptionOp

AMarquee 45 / 80

1.36 qsetop

amarquee.library/QSetOp amarquee.library/QSetOp

NAME

QSetOp - Create or update a data item with a new buffer of data.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QSetOp(struct QSession * session, char * path, void * buffer, ULONG bufferLength)

FUNCTION

This function allows you to upload to the server data you wish to

be made public. The data sent is stored as a simple buffer of bytes,

and can thus be any data type you wish to send.

This function may also be used in direct client-to-client

connections (as created via QNewSession and QNewHostSession),

in which case the data in the arguments is received directly by

the other client.

NOTE

You may only set nodes in your own directory.

This function is preferable to QStreamOp when the data

you are posting is absolute, and it matters more that the other client

programs see the latest revision of the data as soon as possible, than to

have them always receive every update of the data. Also, this function

is more memory-efficient that QStreamOp .

This operation will immediately clear any streaming data buffers

that were previously in use for the given node. Thus, if you

were previously using QStreamOp on a node and then

want to do a QSetOp on that same node, it is a good idea to do a

QGo (QGOF_SYNC) and wait for the sync QMessage first,

before execting the QSetOp, so that none of your streamed updates

will be lost.

INPUTS

session - The session to wish to send the set op to.

path - The regular path of the node you wish to create

or update. Wildcards are not allowed here.

buffer - A pointer to the first byte of the data buffer you

wish to upload, or NULL if you wish to delete an

existing node specified by "path".

bufferLength - The length of the data buffer, in bytes.

RESULTS

AMarquee 46 / 80

Returns the assigned ID number of the set operation on success,

or 0 on failure. Any server-side errors will be sent asynchronously

as QMessages .

EXAMPLE

LONG transID;

LONG data[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

/* Upload the data array into a node named "data" in our home dir */

if (transID = QSetOp(session, "data", data, sizeof(data)))

printf("Set op succeeded, was given id #%li\n",transID);

else

printf("Set op failed. (no memory?)\n");

AREXX NOTES

In ARexx, the fourth argument is optional. If it is not specified,

then the length of the third argument will be computed automatically

so that the entire ARexx string is sent. (that is, it defaults to

length(data)+1. Note that if you specify the fourth argument to

be a value of less than that, the first (n) bytes of the string

will be stored on the server as an unterminated character array)

AREXX EXAMPLE

transID = QSetOp(session, ’myName’, ’Fred’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo , QStreamOp

1.37 qmessageop

amarquee.library/QMessageOp amarquee.library/QMessageOp

NAME

QMessageOp - Send a message to one or more other clients.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QMessageOp(struct QSession * session, char * hosts, void * buffer, ULONG bufferLength)

FUNCTION

This function allows you to send a buffer of data to other clients

on the AMarquee server without permanently storing any information

on the server. This can be more efficient than using subscriptions

to transmit data, and it allows you to easily specify which clients

should receive the message, on a per-message basis.

Your message will be sent to every host that matches the regular

AMarquee 47 / 80

expression specified in the "hosts" argument, provided that that

host has specified that it will accept messages from your client

(via QSetMessageAccessOp). The regular expression in "hosts"

should be of the form "/foo/bar".

If no other clients received your message (either because no clients

matching your specification existed, or because they have not granted

you message access), you will be receive a QERROR_UNPRIVILEGED

QMessage notifying you of this.

When another client sends your client a QMessageOp, the QMessage you

receive will have a qm_ID of zero, and the qm_Path field will contain

the path of the home node of the message’s sender (e.g. "/host/prog").

This function may also be used in direct client-to-client

connections (as created via QNewSession and QNewHostSession),

in which case the data in the arguments is received directly by

the other client.

NOTE

By default, all clients have messaging access turned off. So

in order to send a message to a client, that client must have

first allowed it with QSetMessageAccessOp .

Data passed with this function will be streamed, so you do not

have to worry about synchronization.

INPUTS

session - The session to wish to send the message op to.

hosts - A regular expression indicating which set of clients

you wish to send the message to. It must be of the

form "/foo/bar". For example: to send your message

to all clients named "Bob", do "/#?/Bob".

buffer - A pointer to the first byte of the data buffer you

wish to transmit. If NULL is specified, a one-byte

buffer containing the NUL byte will be transmitted.

bufferLength - The length of the data buffer, in bytes.

RESULTS

Returns the assigned ID number of the message operation on success,

or 0 on failure. Any server-side errors will be sent asynchronously

as QMessages .

EXAMPLE

LONG transID;

LONG data[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

/* Send a message containing the array data to all programs named

AMarquee 48 / 80

ExampleProgram. */

if (transID = QMessageOp(session, "/#?/ExampleProgram", data, sizeof(data)))

printf("Message op succeeded, was given id #%li\n",transID);

else

printf("Message op failed. (no memory?)\n");

AREXX NOTES

In ARexx, the fourth argument is optional. If it is not specified,

then the length of the third argument will be computed automatically

so that the entire ARexx string is sent. (that is, it defaults to

length(data)+1. Note that if you specify the fourth argument to

be a value of less than that, it will be stored on the server as

an unterminated character array!)

AREXX EXAMPLE

transID = QMessageOp(session, ’/#?/ExampleProgram’, ’Hey Everybody!’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo , QSetMessageAccessOp , QSysMessageOp

1.38 qsysmessageop

amarquee.library/QSysMessageOp amarquee.library/QSysMessageOp

NAME

QSysMessageOp - Send a system message to one or more other clients.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QSysMessageOp(struct QSession * session, char * hosts, char * message)

FUNCTION

This function allows you to send a text message to all clients

who have requested QPRIV_GETSYSMESSAGE access. Note that

in order to use this function, your client must have QPRIV_SENDSYSMESSAGE

access.

Your message will be sent to every host that matches the regular

expression specified in the "hosts" argument, as long as the

client hav QPRIV_GETSYSMESSAGE access.

The regular expression in "hosts" should be of the form "/foo/bar".

If no other clients received your message (either because no clients

matching your specification existed, or because they do not have

QPRIV_GETSYSMESSAGE access), you will be receive a QERROR_UNPRIVILEGED

QMessage notifying you of this. You will also receive a

AMarquee 49 / 80

QERROR_UNPRIVILEGED QMessage if you did not have QPRIV_SENDSYSMESSAGE

access when you called this function.

When another client sends your client a QSysMessageOp, the QMessage you

receive will have a qm_ID of zero, and the qm_Path field will contain

the path of the home node of the message’s sender (e.g. "/host/prog").

The qm_Status field will be set to QERROR_SYS_MESSAGE.

The qm_Data field will contain the ASCII text of the message body.

NOTE

By default, all clients have system messaging access turned off. So

in order to send a system message to a client, that client must have

first allowed it with QRequestPrivilegesOp .

Data passed with this function will be streamed, so you do not

have to worry about synchronization.

INPUTS

session - The session to wish to send the message op to.

hosts - A regular expression indicating which set of clients

you wish to send the message to. It must be of the

form "/foo/bar". For example: to send your message

to all clients named "Bob", do "/#?/Bob".

message - A pointer to the text string you wish to transmit.

If NULL is specified, a one-byte empty string

("") will be sent.

RESULTS

Returns the assigned ID number of the message operation on success,

or 0 on failure. Any server-side errors will be sent asynchronously

as QMessages .

EXAMPLE

/* Send a system message to all clients who are listening for it. */

if (transID = QSysMessageOp(session, "/#?/#?", "System shutting down! Log off now.");

printf("SysMessage op succeeded, was given id #%li\n",transID);

else

printf("SysMessage op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QSysMessageOp(session, ’/#?/#?’, ’System shutting down!’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo , QRequestPrivilegesOp , QMessageOp

AMarquee 50 / 80

1.39 qstreamop

amarquee.library/QStreamOp amarquee.library/QStreamOp

NAME

QStreamOp - Create or update a data item with a new buffer of data.

Use data streaming so that other clients will not miss

any updates, even if you don’t use any synchronization.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QStreamOp(struct QSession * session, char * path, void * buffer, ULONG bufferLength)

FUNCTION

This function works essentially the same as QSetOp , except that

you do not need to worry about data synchronization problems (e.g.

changing the data in a node a second time before some clients had

read the first value). Instead, the AMarquee server will ensure

that all stream updates are seen by all interested clients, in the

order they were sent.

In direct client-to-client connections, this function operates

exactly the same as QSetOp does.

NOTE

You may only stream nodes in your own directory.

QStreamOp is less memory-efficient on the server side than QSetOp

is, because the server may have to keep around multiple revisions

of your data in the node you QStreamOp on.

This feature requires v38+ of amarquee.library, and v1.10B+

of AMarqueed.

INPUTS

session - The session to wish to send the stream op to.

path - The regular path of the node you wish to create

or update. Wildcards are not allowed here.

buffer - A pointer to the first byte of the data buffer you

wish to upload, or NULL if you wish to delete an

existing node specified by "path".

bufferLength - The length of the data buffer, in bytes.

RESULTS

Returns the assigned ID number of the stream operation on success,

or 0 on failure. Any server-side errors will be sent asynchronously

as QMessages .

EXAMPLE

AMarquee 51 / 80

LONG transID;

LONG data[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

/* Stream Upload the data array into a node named "data" in our home dir */

if (transID = QStreamOp(session, "data", data, sizeof(data)))

printf("Stream op succeeded, was given id #%li\n",transID);

else

printf("Stream op failed. (no memory?)\n");

AREXX NOTES

In ARexx, the fourth argument is optional. If it is not specified,

then the length of the third argument will be computed automatically

so that the entire ARexx string is sent. (that is, it defaults to

length(data)+1. Note that if you specify the fourth argument to

be a value of less than that, it will be stored on the server as

an unterminated character array!)

AREXX EXAMPLE

transID = QStreamOp(session, ’myName’, ’Fred’)

if (transID = 0) then say "Oops, operation failed"

SEE ALSO

QGo , QSetOp

1.40 qclearsubscriptionop

amarquee.library/QClearSubscriptionOp amarquee.library/QClearSubscriptionOp

NAME

QClearSubscriptionOp - Remove a subscription or all your subscriptions

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QClearSubscriptionsOp(struct QSession * session, LONG which)

FUNCTION

This function may be used to tell the AMarquee server that you wish

to remove one or all of your current subscriptions.

NOTE

No error will be returned, and no harm done, if you specify the

deletion of a subscription id that you do not have in effect.

INPUTS

session - The session that you wish to send the clearsubscription op to.

which - The transaction ID of the subscription to clear (as was

returned to you by QSubscribeOp), or 0 if you wish to

clear all of your current subscriptions.

AMarquee 52 / 80

RESULTS

Returns the assigned ID number of the clearsubscription operation

on success, or 0 on failure.

EXAMPLE

LONG transID;

/* clear all our previous subscriptions */

if (transID = QClearSubscriptionsOp(session, 0))

printf("ClearSub op succeeded, was given id #%li\n",transID);

else

printf("ClearSub op failed. (no memory?)\n");

AREXX NOTES

In ARexx, the second argument is optional. If not specified,

it defaults to zero (e.g. clear all subscriptions)

AREXX EXAMPLE

transID = QClearSubscriptionsOp(session)

if (transID = 0) then say "Oops, transaction failed."

SEE ALSO

QGo , QSubscribeOp

1.41 qpingop

amarquee.library/QPingOp amarquee.library/QPingOp

NAME

QPingOp - Requests that the Amarquee server respond with a

"ping" message.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QPingOp(struct QSession * session)

FUNCTION

This function tells the AMarquee server to return a ping QMessage .

This can be useful if you wish to be sure that your AMarquee process

has completed all previous operations you may have sent it.

This function may also be used in direct client-to-client

connections (as created via QNewSession and QNewHostSession),

in which case the other client will receive an QMessage containing

how much memory is free on your machine.

NOTE

While this operation will help you synchronize to the completion

of work by your *own* AMarqueed server process, it will not

AMarquee 53 / 80

guarantee that by the time you receive your "ping" QMessage ,

that your changes have been propagated to all the *other* AMarqueed

processes. You can use QGo (QGOF_SYNC)’s ping reply to guarantee that.

INPUTS

session - The session to send the ping operation to.

RESULTS

Returns the assigned ID number of the ping operation or 0 to

indicate failure. A ping QMessage will be returned asynchronously.

EXAMPLE

LONG transID;

/* Send a ping to the server, that will be sent back ASAP */

if (transID = QPingOp(session))

printf("Ping op succeeded, was given id #%li\n",transID);

else

printf("Ping op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QPingOp(session)

if (transID = 0) then say "Oops, transaction failed."

SEE ALSO

QGo , QInfoOp

1.42 qinfoop

amarquee.library/QInfoOp amarquee.library/QInfoOp

NAME

QInfoOp - Request that the AMarquee server respond with an

"info ping" message.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QInfoOp(struct QSession * session)

FUNCTION

Works essentially the same as QPingOp , only the returned

"ping" QMessage will have a struct QRunInfo as data, reflecting

the current memory state of the AMarquee server.

This function may also be used in direct client-to-client

connections (as created via QNewSession and QNewHostSession),

in which case the other client will receive an info QMessage.

NOTE

Of course, any memory state info sent to you by the AMarquee

AMarquee 54 / 80

server is very likely to be out of date by the time you get it!

Also, when using the contents of QRunInfo to estimate how much

information you can safely store on the AMarquee server, it

will be helpful to know that the server makes a copy of everything

it receives before deleting the original data, so qr_Avail should

be AT LEAST 2 times the amount you wish to upload, and probably

3 or 4 times is safer.

Lastly, the QRunInfo struct will likely expand (in a compatible way)

in future versions of AMarquee.

INPUTS

session - The session to send the info operation to.

RESULTS

Returns the assigned ID number of the ping operation or 0

to indicate failure. A ping QMessage (with a QRunInfo struct

in the qm_Data field) will be returned asynchronously.

The returned QRunInfo struct (defined in AMarquee.h) is as follows:

struct QRunInfo

{

LONG qr_Allowed; /* The theoretical maximum number of bytes your server may allocate. */

LONG qr_Alloced; /* The number of bytes currently allocated by your server. */

LONG qr_Avail; /* The number of bytes that may actually be allocated by your server. */

ULONG qr_CurrentPrivs; /* Bit chord of QPRIV_* values: privileges you currently enjoy */

ULONG qr_PossiblePrivs; /* Bit chord of QPRIV_* values: privileges you can acquire */

};

qr_Allowed will be constant throughout your AMarquee session.

qr_Alloced will depend solely on your program’s actions.

qr_Avail depends on qr_Allowed, qr_Avail, and also the amount of

free memory available on the server computer. It may change at

any time.

qr_CurrentPrivs can be set via calls to QRequestPrivilegesOp or

QReleasePrivilegesOp . It can never

contain bits that are not also in qr_PossiblePrivs field, though.

EXAMPLE

LONG transID;

/* Send a ping to the server, that will be sent back ASAP */

if (transID = QInfoOp(session))

printf("Info op succeeded, was given id #%li\n",transID);

else

printf("Info op failed. (no memory?)\n");

AMarquee 55 / 80

AREXX EXAMPLE

transID = QInfoOp(session)

if (transID = 0) then say "Oops, transaction failed."

SEE ALSO

QGo , QPingOp

1.43 qsetaccessop

amarquee.library/QSetAccessOp amarquee.library/QSetAccessOp

NAME

QSetAccessOp - Set a path describing which other clients may

access your data.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QSetAccessOp(struct QSession * session, char * newAccess)

FUNCTION

By default, any other AMarquee client may download your client’s

data. But it may be that you only want to share your data with

certain clients. This function allows you to set an access

control path, in the form of "/hostExp/progExp", to specify

exactly which other AMarquee clients may look at your data.

Clients that are not included in your access path will not

be notified when your data is updated, and they will not see

any data in your directory via QGetOp(), either.

NOTE

While you can hide your data from other clients, you cannot

hide your presence. Unauthorized clients will still be able

to see your root node, and may still be notified when your

session begins or ends.

If you specify an access pattern that excludes your own data(!),

you will not be able to read your data using global node paths

(e.g. QGetOp ("/myhost/myprog/mydata") will not return any QMessages

to you), but you can still read your data using local node paths

(e.g. QGetOp ("mydata"), which means the same thing, will work).

You can always QSetOp to your directory, no matter what.

INPUTS

session - The session you wish to send the access operation to.

newAccess - The new access pattern to use. Note that on startup,

the access pattern is "/#?/#?" (i.e. no restrictions

AMarquee 56 / 80

on access).

RESULTS

Returns the assigned ID number of the access operation, or 0

to indicate failure. This function will fail and return 0 if

the "newAccess" arg is not in the form "/foo/bar".

EXAMPLE

LONG transID;

/* Let only programs named ExampleProgram see our data */

if (transID = QSetAccessOp(session, "/#?/ExampleProgram"))

printf("SetAccess op succeeded, was given id #%li\n",transID);

else

printf("SetAccess op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QSetAccessOp(session, ’#?/ExampleProgram’)

if (transID = 0) then say "Oops, transaction failed."

SEE ALSO

QGo , QGetOp , QSubscribeOp

1.44 qsetmessageaccessop

amarquee.library/QSetMessageAccessOp amarquee.library/QSetMessageAccessOp

NAME

QSetMessageAccessOp - Specify which other clients may send

you messages with QMessageOp .

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QSetMessageAccessOp(struct QSession * session, char * newAccess, LONG maxBytes)

FUNCTION

This function allows you to specify which other clients may

send you data directly using the QMessageOp function.

NOTE

When you first connect, messaging access is turned off, and no

other client may send you messages. (This ensures that you

do not receive QMessages that you were not expecting!)

INPUTS

session - The session you wish to send the message access op to.

newAccess - The new access pattern to use, or NULL if you wish to

allow no messages to be sent to your program.

maxBytes - The maximum size that any data buffer sent to your

AMarquee 57 / 80

client may be. Messages longer that "maxBytes" bytes

long will be truncated before they are sent to you.

If you specify maxBytes as -1, no restriction will be

placed on message length.

RESULTS

Returns the assigned ID number of the access operation, or 0

to indicate failure. This function will fail and return 0 if

the "newAccess" arg is not in the form "/foo/bar".

EXAMPLE

LONG transID;

/* Let programs named ExampleProgram send us messages */

if (transID = QMessageSetAccessOp(session, "/#?/ExampleProgram"))

printf("MessageSetAccess op succeeded, was given id #%li\n",transID);

else

printf("MessageSetAccess op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QSetMessageAccessOp(session, ’#?/ExampleProgram’)

if (transID = 0) then say "Oops, transaction failed."

SEE ALSO

QGo , QMessage

1.45 qrequestprivilegesop

amarquee.library/QRequestPrivilegesOp amarquee.library/QRequestPrivilegesOp

NAME

QRequestPrivilegesOp - Ask for special privileges/abilities.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QRequestPrivilegesOp(struct QSession * session, ULONG privBits)

FUNCTION

This function lets your client ask the server for permission

to do certain operations that are otherwise restricted.

The server may or may not actually grant you permission.

NOTE

This function requires v45 of amarquee.library, and v1.45

of AMarqueed.

INPUTS

session - The session for which you wish to request privileges.

privBits - A bit-chord specifying which special privileges you want.

AMarquee 58 / 80

The following constants are currently available:

QPRIV_KILLCLIENTS - The ability to use QKillClientsOp to disconnect

other client programs.

QPRIV_SENDSYSMESSAGES - The ability to send system messages to

other client programs.

QPRIV_GETSYSMESSAGES - The ability to receive system messages

sent by other programs. (This privilege

is guaranteed to be granted to any client

that requests it)

QPRIV_ADMIN - The ability to change system settings via QSetParameterOp .

QPRIV_ALLPRIVILEGES - This constant is equivalent to all the above

constants OR’d together.

RESULTS

Returns the assigned ID number of the access operation, or 0

to indicate failure (due to memory shortage).

To find out if your requests were granted, call QInfoOp afterwards

and read the qr_Privs field of the returned struct to find your

new permissions status.

EXAMPLE

LONG transID;

/* Request the ability to get system messages and to disconnect other clients */

if (transID = QRequestPrivilegesOp(session, QPRIV_KILLCLIENTS | QPRIV_GETSYSMESSAGES))

printf("RequestPrivileges op succeeded, was given id #%li\n",transID);

else

printf("RequestPrivileges op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QRequestPrivilegesOp(session, QPRIV_KILLCLIENTS | QPRIV_GETSYSMESSAGES)

if (transID = 0) then say "Oops, transaction failed."

SEE ALSO

QGo , QReleasePrivilegesOp , QKillClientsOp

1.46 qreleaseprivilegesop

amarquee.library/QReleasePrivilegesOp amarquee.library/QReleasePrivilegesOp

NAME

QReleasePrivilegesOp - Relinquish special privileges/abilities.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QReleasePrivilegesOp(struct QSession * session, ULONG privBits)

AMarquee 59 / 80

FUNCTION

With this function you can give up your special permissions that

were previously given you as the result of a call to QRequestPrivilegesOp .

NOTE

This function requires v45 of amarquee.library, and v1.45

of AMarqueed.

INPUTS

session - The session for which you wish to release privileges.

privBits - A bit-chord specifying which special priviliges you want

to give up. The following constants are currently available:

To see which constants may be or’d together into privBits,

read the QRequestPrivilegesOp documentation .

RESULTS

Returns the assigned ID number of the access operation, or 0

to indicate failure (due to memory shortage).

The server will always allow you to give up privileges, so

no further result checking should be necessary.

EXAMPLE

LONG transID;

/* Release the ability to kill other clients */

if (transID = QReleasePrivilegesOp(session, QPRIV_KILLCLIENTS))

printf("ReleasePrivileges op succeeded, was given id #%li\n",transID);

else

printf("ReleasePrivileges op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QReleasePrivilegesOp(session, QPRIV_KILLCLIENTS)

if (transID = 0) then say "Oops, transaction failed."

SEE ALSO

QGo , QRequestPrivilegesOp , QKillClientsOp

1.47 qkillclientsop

amarquee.library/QKillClientsOp amarquee.library/QKillClientsOp

NAME

QKillClientsOp - Cause other clients to be disconnected from the server.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QKillClientsOp(struct QSession * session, char * hosts)

FUNCTION

AMarquee 60 / 80

With this function you can forcibly remove the AMarqueed connections

from other client programs that are logged in to the same server.

This function is intended to be used by administration programs

only, and thus it requires special permission to use.

NOTE

This function requires v45 of amarquee.library, and v1.45

of AMarqueed.

This command will never cause your own client to be disconnected,

even if your /hostName/progName is included in the hosts argument’s

specification.

INPUTS

session - The session on which you wish to kill other clients.

hosts - A hostname specifier describing which hosts and/or

programs should be disconnected. This should be a

string in the form of "/hostExp/progExp".

RESULTS

Returns the assigned ID number of the access operation, or 0

to indicate failure (due to memory shortage, or because the

hosts string was not formatted correctly).

If you do not have QPRIV_KILLCLIENTS permission, this command

will have no effect other than to have a QERROR_UNPRIVILEGED

packet be sent to you.

EXAMPLE

LONG transID;

/* Disconnect all clients except my own */

if (transID = QKillClientsOp(session, "/#?/#?"))

printf("KillClients op succeeded, was given id #%li\n",transID);

else

printf("KillClients op failed. (no memory?)\n");

AREXX EXAMPLE

transID = QKillClientsOp(session, ’/#?/#?’)

if (transID = 0) then say "Oops, transaction failed."

SEE ALSO

QGo , QRequestPrivilegesOp , QReleasePrivilegesOp

AMarquee 61 / 80

1.48 getnextqmessage

amarquee.library/GetNextQMessage amarquee.library/GetNextQMessage

NAME

GetNextQMessage - Wait for next QMessage to be received from the TCP thread.

SYNOPSIS

GetNextQMessage(session, timeout, signals)

FUNCTION

This function is available from ARexx scripts only.

It replaces most of the functionality of the C Wait() call,

and allows your ARexx script to sleep until a QMessage is

ready, or an (optional) timeout occurs, or an (optional) signal

is raised.

INPUTS

session - The session pointer string that was returned by

QNewSession (or a related function) to

create this session.

timeout - The number of milliseconds to wait before timing out

and returning. Set to zero to just poll for QMessages.

If this argument is set to less than zero, or is not

specified, then no timeout will occur (i.e. the function

will not return until a QMessage is available, or a signal

is raised).

signals - A string specifying which interrupt signals should cause

this function to return immediately. If not specified,

any interrupt signal will cause this function to return.

(That is, this argument defaults to the value:

’SIGBREAKF_CTRL_C|SIGBREAKF_CTRL_D|SIGBREAKF_CTRL_E|SIGBREAKF_CTRL_F’)

RESULTS

Returns a pointer string to the QMessage if one became available,

or zero if it had to return for some other reason (a signal was

raised or the timeout period expired). Note that signals CTRL-C,

CTRL-D, CTRL-E, and CTRL-F will all cause this function to return,

and also the signals will be propogated to the ARexx script (so

it should be prepared to handle them!)

NOTE

It is an error to call GetNextQMessage() on a detached QSession.

AREXX EXAMPLE

/* Will return a QMessage is received, or when 5 seconds elapses,

AMarquee 62 / 80

or any CTRL-(C,D,E,F) combo is pressed. */

message = GetNextQMessage(session, 5000)

if (message = 0) then say "Oops, timed out or signalled!"

else do

say "Got QMessage with id " || GetQMessageField(message, ’ID’)

/* ... */

call FreeQMessage(session, message) /* must do this, or memory leaks */

end

AREXX EXAMPLE TWO

/* Will return when a QMessage is received, or when CTRL-C or

CTRL-D are pressed */

message = GetNextQMessage(session, -1, ’SIGBREAKF_CTRL_C|SIGBREAKF_CTRL_D’)

if (message = 0) then say "Oops, timed out or signalled!"

else do

say "Got QMessage with id " || GetQMessageField(message, ’ID’)

/* ... */

call FreeQMessage(session, message) /* must do this, or memory leaks */

end

SEE ALSO

GetQMessageField

1.49 getqmessagefield

amarquee.library/GetQMessageField amarquee.library/GetQMessageField

NAME

GetQMessageField - Returns one of the fields of a QMessage.

SYNOPSIS

GetQMessageField(message, fieldname)

FUNCTION

This function is available from ARexx scripts only.

It allows you to get at the various fields of the QMessage

struct returned to you by GetNextQMessage , without having

to muck around with byte offsets and such.

INPUTS

message - A non-zero pointer string returned by GetNextQMessage .

fieldname - A string specifying which field you wish to

have returned. Should be one of the following,

and is case-insensitive:

ID : Message ID # of transaction related to this opCode, or -1 if no ID is applicable.

AMarquee 63 / 80

Status : One of the QERROR_* identifiers .

Path : Pathname of a node, or NULL if not applicable.

Data : Data buffer, or "" if not applicable.

DataLen : Length of qm_Data buffer, or 0 if not applicable.

ActualLen : Length of the data buffer stored on the AMarquee server.

ErrorLine : Line # of the server source code that generated the error. Useful for debugging.

(The prefix "qm_" may be added to any of these keywords, if

you prefer to have the fields exactly match those of the QMessage

struct defined in amarquee.h)

For QMessages that contain a QRunInfo struct for their qm_Data

(i.e. those returned in response to a QInfoOp), you may also

specify the following fields (with or without a "qr_" prefix):

Allowed : The theoretical maximum number of bytes your server may allocate.

Alloced : The number of bytes currently allocated by your server.

Avail : The number of bytes that may actually be allocated by your server.

CurrentPrivs : ’|’ separated list of QPRIV_* identifiers, showing what special privs you have.

PossiblePrivs : ’|’ separated list of QPRIV_* identifiers, showing what special privs you could get if you asked.

RESULTS

Returns a string containing the contents of the requested

part of the QMessage.

AREXX EXAMPLE

message = GetNextQMessage(session)

if (message > 0) then do

say "Got Message, path was " || GetQMessageField(message, ’Path’)

call FreeQMessage(session, message)

end

SEE ALSO

GetNextQMessage

1.50 paramprivs

Below is a table showing the parameter name strings recognized

by QSetParameterOp and QGetParameterOp , and what priviliges you

need to have in order to get or set each of them.

Many of the entries (all beginning with AMARQUEED_, in fact) correspond

to environment variables on the server computer. Calling GetParameterOp

and SetParameterOp with these parameter names will have the effect of

getting and setting the like-named environment variable on the server

computer. Note that AMarqueed daemons only read environment variables when

AMarquee 64 / 80

a new connection is first established, so changing these values will not

affect current connections.

Non-environmental-variable parameters are described separately below.

+---+

| Sets ENV Var Privs needed Privs needed |

| Parameter name on server? to Get value to Set value |

+---+

| |

| AMARQUEED_MAXQUEUEDMESSAGES YES none QPRIV_ADMIN |

| |

| AMARQUEED_BANNED1 YES QPRIV_ADMIN QPRIV_ADMIN |

| |

| AMARQUEED_MAXCONN YES none QPRIV_ADMIN |

| |

| AMARQUEED_TOTALMAXCONN YES QPRIV_ADMIN QPRIV_ADMIN |

| |

| AMARQUEED_KILLCLIENTS YES QPRIV_ADMIN QPRIV_ADMIN |

| |

| AMARQUEED_SENDSYSMESSAGES YES QPRIV_ADMIN QPRIV_ADMIN |

| |

| AMARQUEED_ALLPRIVILEGES YES QPRIV_ADMIN (unsettable) |

| |

| AMARQUEED_ADMIN YES QPRIV_ADMIN (unsettable) |

| |

| AMARQUEED_DEBUG YES none QPRIV_ADMIN |

| |

| AMARQUEED_PRIORITY YES none QPRIV_ADMIN |

| |

| AMARQUEED_MAXMEM YES none QPRIV_ADMIN |

| |

| AMARQUEED_MINFREE YES QPRIV_ADMIN QPRIV_ADMIN |

| |

| AMARQUEED_PINGRATE YES none QPRIV_ADMIN |

| |

| SERVERVERSION NO none (unsettable) |

| |

| MAXQUEUEDMESSAGES NO none none2 |

| |

--+

AMarquee 65 / 80

(1) Includes AMARQUEED_BANNED, AMARQUEED_BANNED1, AMARQUEED_BANNED2,

all the way up to AMARQUEED_BANNED9

(2) no privileges needed to lower value; QPRIV_ADMIN needed to raise it.

Miscellaneous parameter descriptions

- SERVERVERSION: This read-only parameter returns the full version

string of the server daemon you are connected to.

- MAXQUEUEDMESSAGES: This parameter lets you get or set the maximum

amount of inter-process messages your server daemon

can accumulate before it is killed. The value

is originally set to the value specified by the

AMARQUEED_MAXQUEUEDMESSAGES parameter on the server,

and may be changed by each client after that.

Any client may lower the value; QPRIV_ADMIN is

needed to raise it. Values of 0 or less are

interpreted to mean "a very large limit".

1.51 qsetparameterop

amarquee.library/QSetParameterOp amarquee.library/QSetParameterOp

NAME

QSetParameterOp - Set miscellaneous parameters.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QSetParameterOp(struct QSession * session, char * paramName, char * newValue)

FUNCTION

This function lets your client set certain environment variables

or other miscellaneous parameters on the server machine. Note that

your client will need QPRIV_ADMIN status to set most of these variables.

NOTE

This function requires v45 of amarquee.library, and v1.45

of AMarqueed.

INPUTS

session - The session for which you wish to set a parameter.

paramName - The keyword corresponding to the parameter you

wish to set. Keywords, and who they may be set by,

are described in this table .

Note that parameter names are case sensitive!

newValue - A NUL-terminated string that is the value you wish

to set the given parameter to.

AMarquee 66 / 80

Values are always passed in ASCII format, even

for numeric parameters.

RESULTS

Returns the assigned ID number of the access operation, or 0

to indicate failure (due to memory shortage).

If you did not have permission to set the parameter you indicated,

a QERROR_UNPRIVILEGED message will be sent back from the server.

If you specified an unknown paramName, a QERROR_MALFORMEDKEY

will be sent back from the server.

EXAMPLE

LONG transID;

/* Try to make the server execute a "setenv AMARQUEED_PINGRATE 12"... */

if (transID = QSetParameterOp(session, "AMARQUEED_PINGRATE", "12"))

printf("Set parameter op succeeded, was given id #%li\n",transID);

else

printf("Set parameter op failed. (no memory?)\n");

SEE ALSO

QGo , QGetParameterOp , QRequestPrivilegeOp

1.52 qgetparameterop

amarquee.library/QGetParameterOp amarquee.library/QGetParameterOp

NAME

QGetParameterOp - Get the value of miscellaneous parameters.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QGetParameterOp(struct QSession * session, char * paramName)

FUNCTION

This function lets your client get the value of certain environment

variables or other miscellaneous parameters on the server machine.

Note that your client will need QPRIV_ADMIN status to get some

of these variables.

NOTE

This function requires v45 of amarquee.library, and v1.45

of AMarqueed.

INPUTS

session - The session for which you wish to get a parameter.

paramName - The keyword corresponding to the parameter you

wish to get. Keywords, and who they may be retrieved by,

AMarquee 67 / 80

are described in this table .

Note that parameter names are case sensitive!

RESULTS

Returns the assigned ID number of the access operation, or 0

to indicate failure (due to memory shortage).

If you did not have permission to retrieve the parameter you indicated,

a QERROR_UNPRIVILEGED message will be sent back from the server.

If you specified an unknown paramName, a QERROR_MALFORMEDKEY

will be sent back from the server.

Otherwise, the parameter’s value will be returned to you in

a QMessage that has qm_Path set to the parameter’s name,

and qm_Data set to the parameter’s value (all values will

be sent as NUL-terminated ASCII strings).

EXAMPLE

LONG transID;

/* Find out who is banned from the server. */

if (transID = QGetParameterOp(session, "AMARQUEED_BANNED"))

printf("Get parameter op succeeded, was given id #%li\n",transID);

else

printf("Get parameter op failed. (no memory?)\n");

SEE ALSO

QGo , QSetParameterOp , QRequestPrivilegeOp

1.53 freeqmessage

amarquee.library/FreeQMessage amarquee.library/FreeQMessage

NAME

FreeQMessage - Frees the given QMessage and its associated data.

SYNOPSIS

#include <clib/amarquee_protos.h>

void FreeQMessage(struct QSession * session, struct QMessage * qmsg)

FUNCTION

Frees the given QMessage and its associated data. You must call

this function on EVERY QMessage that you recieve, sometime before

you QFreeSession the session that you got it from. After you

FreeQMessage a QMessage, you may no longer access any of the

data it contained. Your app will be more memory efficient if you

free your QMessages as soon as possible.

NOTE

AMarquee 68 / 80

QMessages use a special memory-sharing scheme, so you MUST use

this function and not FreeMem() or ReplyMsg() or anything else

on QMessages!

INPUTS

session - The session from which you received the QMessage

qmsg - The QMessage to free.

RESULTS

None.

EXAMPLE

struct QSession * s;

struct QMessage * qmsg;

/* ... setup QSession s ... */

while(qmsg = GetMsg(s->qMsgPort->mp_SigBit))

{

/* ... process qmsg ... */

FreeQMessage(qmsg);

}

AREXX EXAMPLE

message = GetNextQMessage(session, -1, ’SIGBREAKF_CTRL_C|SIGBREAKF_CTRL_F’)

if (message > 0) then do

say "QMessage received---------"

say "Status: " || GetQMessageField(message, ’Status’) || " (" || QErrorName(GetQMes

/* ... */

call FreeQMessage(session, message)

end

SEE ALSO

QMessages

1.54 qgo

amarquee.library/QGo amarquee.library/QGo

NAME

QGo - Instructs the TCP thread to begin transmitting the

currently accumulated transaction packet.

SYNOPSIS

#include <clib/amarquee_protos.h>

LONG QGo(struct QSession * session, ULONG flags)

FUNCTION

All of the Q#?Op() functions in amarquee.library create

AMarquee 69 / 80

transaction packets which are queued on the client computer.

That is, they are not immediately transmitted to the AMarquee

server. Rather, when you wish to transmit the operations you

have accumulated, you should call this function.

NOTE

The QGOF_SYNC option of this command is different from

doing a QPingOp , because with this option you

are guaranteed that all other server processes have seen your

new data by the time you get the back ping packet that this

operation generated.

INPUTS

session - The session you wish to begin transmission.

flags - A bit chord of the QGOF_* flags defined in AMarquee.h

Flags currently supported are:

QGOF_SYNC - If set, the AMarquee server will be return a ping

packet after all of the operations currently queued

have executed, and all other AMarquee server threads

have been notified of any updates made. The ping

packet will have a qm_ID equal to the return value

of this function.

QGOF_NOTIFY - If set, the client TCP thread will notify your

application via a QMessage as soon as it has

finished sending the data in this transaction.

The returned QMessage will have a qm_Status of

QERROR_SEND_DONE, and a qm_ID equal to the return

value of this function. (This flag was introduced

in v47 of amarquee.library, and will be ignored

by earlier versions)

RESULTS

Returns the assigned ID number of the QGo operation or 0

to indicate failure.

EXAMPLE

LONG goID;

/* ... do various Q*Op() calls ... */

if (goID = QGo(0L))

printf("Go succeeded, was given id #%li\n",goID);

else

printf("Go failed. (no memory?)\n");

AREXX EXAMPLE

AMarquee 70 / 80

LONG goID;

/* ... do various Q*Op() calls ... */

goID = QGo(’QGOF_SYNC|QGOF_NOTIFY’)

if (goID > 0) then

say "Go succeeded, was given id #" || goID

else

say "Go failed. (no memory?)"

SEE ALSO

QMessages

1.55 installdaemon

Note: These are instructions for installing a daemon program

written using amarquee.library, NOT for installing the

"AMarqueed" program itself! For instructions on how to

do that, see here .

There are several steps involved in installing an AmiTCP daemon

that will be activated by inetd.

First, you must choose a name for the service the daemon will

provide. In this example, we’ll call the service AMarqueeServer,

because that is the name of the daemon demo included with this

archive. But it could be any name.

Second, you must choose which port the service will reside on.

For this example, I’ll choose port 16000, but it can be almost

any port number, as long as no other service is using that same

number.

Now you have to edit a couple of config files.

First, open up amitcp:db/services in your text editor

and add a line at the bottom for your new service. For

amarquee.library based servers, that line should have the format:

ServiceName portNumber/tcp

So in our example, add the line:

AMarqueeServer 16000/tcp

Now save the services file and open the file amitcp:db/inetd.conf.

Again, we want to add a line for our service at the bottom of

the file. For amarquee-based servers, that line should have

this format:

ServiceName stream tcp nowait root fullPathNameToExecutable

So for our example, add the line:

AMarquee 71 / 80

AMarqueeServer stream tcp nowait root amitcp:serv/AMarqueeServer

Don’t forget to copy the executable file "AMarqueeServer" into

the amitcp:serv directory, or change the last field of the above

config line to reflect the executable’s real location on your

disk!

Now, after you re-start AmiTCP, the AMarqueeServer service should

be available on port 16000. To make sure it works, you can try

to connect to it with the AMarqueeDebug utility:

AMarqueeDebug localhost JustAQuickTest 16000

And AMarqueeServer will open a window. If it doesn’t seem to

be working, make sure you have AmiTCP configured so that the

inetd program is running, and use SnoopDos to see if your

executable file is being loaded correctly.

1.56 exampleclients

I have written and included some little AMarquee toy applications

in this archive. These applets come with C source code, and are

meant as examples on how to use AMarquee. They aren’t as robust

or useful as they could be, but they do demonstrate some possible

AMarquee uses and techniques.

Applications that can currently be found in the "Examples" directory:

AMarqueeDebug - A cli interface to AMarquee. Connects to an AMarquee

server on the server and port specified on the command

line. Once connected, it allows you to execute

various AMarquee commands and see incoming QMessages.

AMarqueeDebug.rexx - Same thing as AMarqueeDebug, but written in ARexx.

AMarqueeDebugMultiThread - Just like AMarqueeDebug, but with an

extra thread thrown in to demonstrate

the use of QDetachSession and QReattachSession .

KillClients.rexx - A utility that allows you to kick AMarquee clients

off the AMarquee daemon running on localhost. Note

that you must set the env variable AMARQUEED_KILLCLIENTS

appropriately to give KillClients permission to do this,

or it won’t work. ("/localhost/#?" is a good setting

to use)

SysMessage.rexx - A utility that lets you send system messages to

AMarquee clients logged into your machine’s AMarqueed

server. (You’ll need QPRIV_SENDSYSMESSAGE access to

AMarquee 72 / 80

do this)

AMarqueeHost - Like AMarqueeDebug, only instead of initiating a connection,

it uses QNewHostSession to await an incoming connection on

a specified port.

AMarqueeHost.rexx - Like AMarqueeHost, but written in ARexx.

AMarqueeServer - Something like AMarqueeHost, only implemented as an

AmiTCP daemon using QNewServerSession . To start

this program, you should install it in inetd’s service

registry, and then connect to it via an AMarquee client.

For example, if you installed it on port 16000, you

could connect to AMarqueeServer using AMarqueeDebug:

AMarqueeDebug localhost test 16000

BounceCount - Tests the data subscription. Subscribes to "/#?/#?/count",

and whenever it recieves a message that someone else has

updated their count to a higher value than its own, it

responds by updating its value one further.

MiniIRC - A primitive IRC system. Just one "room", but hey--it’s

only 212 lines of C source code!

RemoveTest - Tests the node removal notification by continuously

creating a node and then deleting it. You can use

AMarqueeDebug or whatever to subscribe to "/#?/#?/switch"

to see that it works.

SillyGame - A trivial multiplayer "game" implemented with AMarquee.

You can use the numeric keypad to move your letter around,

or press any other key to change to another letter.

Uses data streaming for better performance.

SyncTest - Tests the QGo() synchronization. Anyone who subscribes

to "/#?/#?/count" should see its value increasing without

ever missing a step.

StreamGen - Tests the QStreamOp() synchronization. Have this program

logged into your AMarqueed server, and then connect one or

more StreamCheck programs to the same server.

StreamCheck - Tests the QStreamOp() synchronization. Log these into

an AMarqueed server where StreamGen is running. They

should count up numbers and not report any skipped numbers.

AMarquee 73 / 80

1.57 Thanks

Thanks go to the following people:

Oliver Hotz, for hosting the first full-time AMarqueed server site.

Thomas Steinbichler, for hosting the second (and current) full-time

AMarqueed server site (at qamitrack.tibb.at, port 2957)

Ryan Ojakian and Trina Arth... two incredible human beings who know

what "mahuhmanah" means! :)

Meni Berman, for his help beta-testing.

Håkan Parting and Markus Lamers for alerting me to

the existence of evil bugs in amarquee.library.

Fredrik Rambris, for providing the Miami portion of the

Installer script.

Raj, for helping with the Inet225 versions of the code.

Petter Nielsen, Anders Jakobsen, and Dean Husby for helping with

the ARexx support.

Mike Constantine, for helping make AMarquee work on 68000

and 68010 Amigas.

The good folks on comp.sys.amiga.programmer, for suggesting

solutions to several show-stopping programming problems with

the code.

1.58 faq

Q: What is a good AMarqueed server to connect to?

A: Right now there is qamitrack.tibb.at, which is the server

for QAmiTrack. You can also use it for other programs,

for now, but if there is too much load on it, the site

administrator might have to restrict it to just QAmiTrack

use, so go easy! :) Hopefully, other sites will appear

for use with other programs...

Q: What cool AMarquee programs are there?

A: Well, at the time of this writing there is Netris, QAmiTrack,

QSendFile, and ARemote, written by me, and AmiComSys, by Håkan Parting.

All are available on Aminet.

A2: Oh yeah, if you’re bored you can check out the example

programs included with this archive. SillyGame is my

personal favorite. :)

Q: Why can’t I connect to an AMarquee server?

AMarquee 74 / 80

A: There could be any of a number of reasons:

- The Amiga running the server is down or inaccessible.

- The Amiga running the server has banned your site or

client program, or has reached its maximum number of

connections allowed.

- The Amiga running the server is running low on memory.

- Your TCP stack is configured wrong, or you are using

the wrong flavor of amarquee.library (e.g. the Inet225

version under AmiTCP, or vice versa--do a

"version libs:amarquee.library file full" to find out

which flavor you have installed)

Q: Why do I keep getting disconnected from the AMarquee server?

A: Again, it could be any of several reasons:

- The server shut down.

- A client with KILLCLIENT privilege has killed your connection

to the server. (Such a client would usually be an admin

tool being operated by the server owner)

- The TCP connection was so slow that the server thought

you had crashed.

- The TCP connection was so slow that your client thought

the server had crashed.

- Your TCP stack had been shut down.

- The server computer ran out of memory.

- Your computer ran out of memory.

- You and the server are running incompatible versions of

AMarquee. Specifically, AMarqueed servers before v1.45

may have trouble with amarquee.library v45 and above.

- A second AMarquee client has logged into the AMarquee server,

and it has the same hostname and program name as your client

program. AMarquee enforces the uniqueness of the

hostname/programName pair on any given server computer,

so if a duplicate program logs in, the original is logged out.

1.59 The ground was littered with squashed bugs...

("-" = new feature, "*" = bug fix)

1.48 : (Public Release 4/10/98) (amarquee.library v48)

* Both amarquee.library and AMarqueed could crash on 68000

or 68010 processors, as they didn’t always keep data

AMarquee 75 / 80

aligned to word boundaries. Fixed. (Thanks to Mike

Constantine for his help with this!)

1.47 : (Public Release 2/20/98) (amarquee.library v47)

- Added a QGOF_NOTIFY flag to QGo ().

- Added the QDetachSession () and QReattachSession () functions to

amarquee.library.

- Added AMarqueeDebugMultiThreaded.c to the testPrograms

directory, as a test/demonstration of the new functions.

- Optimized the transport code somewhat, to cut down on the number

of memory allocations, and the amount of memory used.

- Added Session.h to the distribution. Session.h contains a C++

"wrapper" class named Session , that represents a QSession in a nice

object-oriented manner.

- Added AMarqueeDebug.cpp to the Example Clients directory.

* Added the link to the QErrorName documentation that was

overlooked before in the API listing .

* Fixed the parsing of arguments in the ARexx version of QGo ().

1.46 : (Public Release 12/7/97) (amarquee.library v46)

- ARexx support ! amarquee.library is now usable by ARexx scripts.

- Added the QGetAndSubscribeOp () function to amarquee.library.

- Added amarqueedebug.rexx, amarqueehost.rexx, sysmessage.rexx,

and killclients.rexx to the sample programs directory.

* Fixed a bug in AMarqueed that prevented QRenameOp events from

being broadcast to other clients correctly--the deletion of

the old name would be sent, but not the creation of the new one.

* QNewHostSession () was broken under Inet225. Fixed it. (Thanks

to Raj for reporting this!)

* Fixed a minor bug that would cause an unwarranted update message

to be sent to any client that had received a QMessageOp message

from a client whose root node it was monitoring via QSubscribeOp .

1.45 : (Public Release 11/2/97) (amarquee.library v45)

- Added Inet225 versions of amarquee.library and AMarqueed.

Now all amarquee.library based programs can run, without

modification, on both AmiTCP and Inet225 systems!

Furthermore, Inet225 systems can be AMarquee servers.

- Added Pascal headers and a link library, AMarquee.lib.

Now amarquee.library can be used by PCQ programs!

- Extended the Installer script to install to Inet225,

and to (optionally) install the PCQ specific files.

AMarquee 76 / 80

It also helps you set the new env variables (described below)

- Added the QRequestPrivilegesOp , QReleasePrivilegesOp , and

QKillClientsOp functions to amarquee.library.

With these functions, favored clients can request

special abilities from the server.

- Added the AMARQUEED_KILLCLIENTS , AMARQUEED_ADMIN ,

AMARQUEED_SENDSYSMESSAGES and AMARQUEED_ALLPRIVILEGES env variables to

AMarqueed, to allow the site administrator to specify who can

get special abilities.

- Added the AMARQUEED_MAXQUEUEDMESSAGES env variable to

AMarqueed. This setting allows you to have AMarqueed

automatically disconnect clients who are getting too

far behind in their duties (due to e.g. a bad TCP connection

to their client), so that they don’t eat up all your

memory.

- Added the QGetParameterOp and QSetParameterOp functions to

amarquee.library, so that client programs may get or set

certain parameters on the server.

- Added client-to-server ping logic to amarquee.library.

Now your client should know within 10 minutes that the

server has crashed/gone offline, even if it didn’t go down

"gracefully", and your connection was idle the whole time.

* Fixed a typo in the .fd file that was causing QErrorName

to return incorrect results.

* Fixed a bug in the server-to-client ping logic. The server

should detect "dead" client connections somewhat more quickly now.

* Fixed a bug in the access-control logic. Before, QSetAccessOp kept

other clients from "seeing" even the root node of its client, rather

than just the contained data--making the client effectively invisible

to other clients.

* Server now sends a QERROR_UNIMPLEMENTED message when it gets

a packet it doesn’t know the type of, rather than disconnecting

the client. This should ease compatibility problems in the future.

1.44 : (Public Release 6/3/97) (amarquee.library v44)

- Added the QNumQueuedPackets and QNumQueuedBytes functions to

amarquee.library.

- Added the QErrorName function to amarquee.library

- Added some additional QERROR_* codes, and added a return value

to QFreeSession so that it can return them.

AMarquee 77 / 80

1.43 : (Public Release 4/27/97) (amarquee.library v43)

* amarquee.library’s QMessage freeing system had a design

flaw that was causing Enforcer hits and memory leaks. Fixed that,

and as a side effect, FreeQMessage is now much more efficient.

* Fixed a bug in QFreeSession that would cause it to deadlock

and hang the calling process when freeing QSessions that were

allocated with QNewHostSession .

* Fixed some typos, layout errors, and anachronisms in the .guide file.

1.41 : (Public Release 4/17/97) (amarquee.library v42)

* Fixed a nasty race condition in amarquee.library that could

cause crashes and/or memory leaks if the priority of the TCP

client thread was different from that of the user’s thread.

Thanks to Håkan Parting and Markus Lamers for reporting this bug!

1.40 : (Public Release 4/8/97) (amarquee.library v41)

- Added QNewSessionAsync to amarquee.library.

Now you can connect without temporarily freezing up your GUI!

* The Installer script now puts "resident AMarquee pure" into

the user-startup, so that residenting will still work even if

AMarqueed’s PURE bit isn’t set.

1.30ß : (Public Beta Release 2/9/97) (amarquee.library v40)

- Both AMarqueed and amarquee.library flush their TCP output buffer

after each transaction group has finished being queued. This causes

the packets to be sent sooner, allowing for faster response times.

- Added code to SillyGame that syncs with the AMarquee server on

exit, so that the player’s marker will disappear from the other

clients’ SillyGame windows when he exits.

- Changed the behavior of QSessions created by QNewHostSession .

Now transactions sent to them while they are still unconnected

will cause QERROR_NO_CONNECTION QMessages to be returned.

- Changed QNewHostSession() to allow automatic port selection by

the TCP stack.

- The Installer script now supports Miami. (Thanks to Fredrik

Rambris for providing this)

- Added an example section to all the man pages in the docs.

* Rewrote the client TCP thread shutdown code to be synchronous.

Before, the library sent a signal to cause the TCP thread to quit,

and this could cause the last transaction to be dropped. I think

this was the bug that was causing SillyGame to crash occasionally.

1.20ß : (Public Beta Release 2/4/97) (amarquee.library v39)

AMarquee 78 / 80

- Changed AMarqueed’s behavior when a hostName/progName duplicate

occurs. Before, the new connection was denied. Now, the old

connection quits to make room for the new one, and the new

connection proceeds normally.

- Added an idle-time ping/timeout capability to AMarqueed,

so that dead clients are detected and removed in a reasonable

amount of time. Also added the AMARQUEED_PINGRATE env

variable option.

* Bumped amarquee.library’s revision number to v39 (it

was at v37 in both release 1.10ß and 1.00ß)

* Amarquee TCP handling threads now do the right thing

when AmiTCP is shutting down (they send a QERROR_NO_CONNECTION

to the user program and close SocketBase).

1.10ß : (Public Beta Release 1/28/97) (amarquee.library v38)

- Added the QStreamOp function to the amarquee API .

- Added the QMessageOp function to the amarquee.library API .

- Added the QSetMessageAccessOp function to the amarquee.library API .

- Added the QNewServerSession function to the amarquee API .

Now you can use amarquee.library to make AmiTCP/inetd

style server programs.

- Added the QNewHostSession function to the amarquee API .

Now you can connect directly to other amarquee clients if

you wish, rather than sending all data through the server.

- Added the AMARQUEED_PRIORITY env variable option.

- Added the AMARQUEED_FAKECLIENT env variable option.

- Rewrote AMarqueed to support streaming data.

1.00ß : (Public Beta Release 01/15/96) (amarquee.library v37)

- First beta release.

1.60 What’s Next?

Note: These are things I’m thinking of implementing; Whether I actually

implement them or not depends on how difficult they will be to

implement and user response (both in the form of communications

and donations).

- Fix bugs, fix bugs, fix bugs!

- Server linking?

- Write some more cool AMarquee client programs.

- UDP support

- An AMarqueed admin tool, based on the new admin functions put into

amarquee.library v45.

AMarquee 79 / 80

1.61 unnamed.1

1.62 Known Bugs and Other Problems

- Some memory leaks?

- Sometimes when I run a few AMarquee sessions and then run

"Amiga System Probe" to check the state of the system out,

the ASP window never opens, I can no longer use ARexx or

open or close windows. This may be a bug in AMarquee, or

in ASP, I’m not sure.

- Despite the data-truncation facilities provided by

the maxBytes arguments in various functions, evil people

could still flood your data path, either by sending you

lots of little messages or by sending messages with very

long pathNames...

- An apparent bug in AmiTCP3.0b2 can cause the AMarquee daemon

program to emit the following Enforce hits if it is transmitting

a packet when the client closes the connection. Miami does not

have this problem, and later versions of AmiTCP have not been

tested. The Enforcer hits look like:

LONG-READ from 0000001C PC: 07BFA0E4

USP: 07D9EE78 SR: 0000 SW: 0749 (U0)(-)(-) TCB: 07D97198

Name: "AMarquee [127.0.0.1]" CLI: " "

BYTE-READ from 0000001B PC: 07BFA12A

USP: 07D9EE78 SR: 0000 SW: 0751 (U0)(-)(-) TCB: 07D97198

Name: "AMarquee [127.0.0.1]" CLI: " "

BYTE-WRITE to 0000001B data=04 PC: 07BFA130

USP: 07D9EE78 SR: 0004 SW: 0711 (U0)(-)(-) TCB: 07D97198

Name: "AMarquee [127.0.0.1]" CLI: " "

- AMarquee’s "program name" based access control is insecure,

since any program can log in with any login name. (And, if

the evil hackers are smart enough to be able to do packet

hostname spoofing, than the "host name" based access control

becomes insecure too) Since AMarqueed never reads from

or writes to disk, and does sanity checks on the input

from TCP clients, this isn’t quite as bad as it sounds...

- QNewServerSession () won’t work with the inet225 version of

amarquee.library.

AMarquee 80 / 80

1.63 otherprogs

Other Amiga programs I have written (all require AmigaDos2.04 or higher):

AmiSlate - A paint program that works with AmiTCP to allow two people

to cooperatively paint on the same drawing from different

computers. Features an extensive ARexx port which allows

the construction of new features and games. Comes with

ARexx scripts for chess, tic-tac-toe, backgammon, and others.

(comm/tcp/AmiSlate1.4.lha,115K)

QAmiTrack - An AMarquee program that lets Amigans find each other on the

net. (comm/net/QAmiTrack1.92.lha)

ARemote - An AMarquee program that allows you to transmit your mouse

movements and keystrokes over a TCP connection, so that you

can control all your Amigas from one keyboard.

(comm/net/ARemote1.01B.lha)

AmiPhone - An Internet voice-chat program, similar to IPhone and

VoiceChat and Nevot and all that, only Amiga-specific.

Features a flexible buffering mechanism for slow connections,

an ARexx port, IFF 8SVX transmission and playback, internal

multitasking, and support for a variety of digitizers.

(comm/net/AmiPhone1.92.lha,142K)

Netris - A four-player Internet Tetris game. Play Tetris against

three of your friends! Features customizable, shareable

sound effects, and in-game chat lines for taunting. :)

Uses the AMarquee system for TCP communication.

(comm/net/Netris1.15.lha)

QSendFile - An AMarquee based program to let you send files to

another Amiga. I wrote this so that I could transfer

files to my Mom’s Amiga without her having to know how

do anything other than click "Okay" on her end.

(comm/net/QSendFile1.0B.lha)

GadMget - Loads in an Aminet RECENT or INDEX file and lets you choose

files to download via a pair of ListViews. Features keyword

searching and sorting by name, size, age, directory, and

description. When you’re done, it outputs the ftp commands

that are needed to download the selected files. The output

formatting is extremely flexible, allowing generation of

many formats: ftp, ncftp, ftp-by-mail, shell scripts, etc.

Comes with an ARexx script to completely automate downloading

with ncFTP. (util/misc/GadMget2.05.lha,93K)

	AMarquee
	Contents
	miami
	residentnote
	Installation
	amitcpinstall
	inet225install
	credits
	How to reach me
	disclaimer
	AMarquee is DonationWare
	What you need
	introduction
	Using AMarqueed
	Using amarquee.library functions from ARexx scripts
	Using amarquee.library
	sessionclass
	api
	usingintro
	qmessages
	qnewsession
	qnewsessionasync
	qnewhostsession
	qnewserversession
	qfreesession
	qdetachsession
	qreattachsession
	qnumqueuedpackets
	qerrorname
	qnumqueuedbytes
	qdebugop
	qgetop
	qdeleteop
	qrenameop
	qsubscribeop
	qgetandsubscribeop
	qsetop
	qmessageop
	qsysmessageop
	qstreamop
	qclearsubscriptionop
	qpingop
	qinfoop
	qsetaccessop
	qsetmessageaccessop
	qrequestprivilegesop
	qreleaseprivilegesop
	qkillclientsop
	getnextqmessage
	getqmessagefield
	paramprivs
	qsetparameterop
	qgetparameterop
	freeqmessage
	qgo
	installdaemon
	exampleclients
	Thanks
	faq
	The ground was littered with squashed bugs...
	What's Next?
	unnamed.1
	Known Bugs and Other Problems
	otherprogs

